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ABSTRACT
The continued growth in the processing power of FPGAs coupled
with high bandwidth memories (HBM), makes systems like the
Xilinx U280 credible platforms for linear solvers which often domi-
nate the run time of scientific and engineering applications. In this
paper, we present Callipepla, an accelerator for a preconditioned
conjugate gradient linear solver (CG). FPGA acceleration of CG
faces three challenges: (1) how to support an arbitrary problem and
terminate acceleration processing on the fly, (2) how to coordinate
long-vector data flow among processing modules, and (3) how to
save off-chip memory bandwidth and maintain double (FP64) pre-
cision accuracy. To tackle the three challenges, we present (1) a
stream-centric instruction set for efficient streaming processing and
control, (2) vector streaming reuse (VSR) and decentralized vector
flow scheduling to coordinate vector data flow among modules
and further reduce off-chip memory access latency with a dou-
ble memory channel design, and (3) a mixed precision scheme to
save bandwidth yet still achieve effective double precision quality
solutions. To the best of our knowledge, this is the first work to
introduce the concept of VSR for data reusing between on-chip
modules to reduce unnecessary off-chip accesses and enable mod-
ules working in parallel for FPGA accelerators. We prototype the
accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that
compared to the Xilinx HPC product, the XcgSolver, Callipepla
achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94×
better energy efficiency. Compared to an NVIDIA A100 GPU which
has 4× the memory bandwidth of Callipepla, we still achieve 77%
of its throughput with 3.34× higher energy efficiency. The code is
available at https://github.com/UCLA-VAST/Callipepla.
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1 INTRODUCTION
The need to solve large systems of linear equations is common in
scientific and engineering fields including mathematics, physics,
chemistry, and other natural sciences subjects [1, 13, 15], and often
dominates their runtime. As these linear systems are often sparse,
it is not practical to invert them, and the requirements for storage
and time grow superlinearly if one tries to factor them. Therefore,
for well conditioned problems, practitioners are drawn to itera-
tive algorithms whose storage requirements are minimal, yet still
converge to a useful solution in a reasonable period of time.

The Conjugate Gradients method [21] is a well known itera-
tive solver. Coupled with even the simplest Jacobi preconditioner
(JPCG) [34], it is very effective for solving linear systems that are
symmetric and positive definite. The acceleration of (precondi-
tioned) conjugate gradient on general-purpose platforms CPUs and
GPUs suffer from low computational efficiency [20, 28]. The com-
putational efficiency is even worse for distributed and clustered
computers [12].

The recent High BandwidthMemory (HBM) equipped FPGAs [45]
enable us to customize accelerator architecture and optimize data
flows with high memory bandwidth for the conjugate gradient
solver. In this work, we present Callipepla, an accelerator proto-
typed on Xilinx U280 HBM FPGA for Jacobi preconditioned conju-
gate gradient linear solver. We resolve three challenges in FPGA
CG acceleration with our innovative solutions.

Challenge 1: The support of an arbitrary problem and acceler-
ator termination on the fly. The FPGA synthesis/place/route flow
takes hours even days to complete, which prevents the frequent
invocation of conjugate gradient solvers on different problems in
data centers. Thus, we need to build an accelerator to support an
arbitrary problem. However, the JPCG has six dimensions of free-
dom as illustrated in Algorithm 1, which makes it challenging for
the JPCG accelerator to support an arbitrary problem. Furthermore,
it is difficult to terminate the accelerator on the fly for a preset
threshold (Line 6 of Algorithm 1), because we do not know when
to terminate until we run the algorithm/accelerator. To resolve this

247

https://github.com/UCLA-VAST/Callipepla
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3543622.3573182
https://doi.org/10.1145/3543622.3573182
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573182&domain=pdf&date_stamp=2023-02-12


FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linghao Song et al.

challenge, we design a stream centric instruction set to control the
processing modules and data flows in the accelerators. We encode
vector and matrix size and data flow directions in the instruction. A
global controller is responsible to issue instructions. Therefore, we
are able so support an arbitrary problem for JPCG and terminate
the accelerator.

Challenge 2: The coordination of long-vector data flow among
processing modules. JPCG involves the processing of multiple long
vectors whose size is larger than on-chip memory. The latency cost
is high if we always write a produced vector to off-chip memory
and read a vector from off-chip memory when a module consumes
the vector. There are opportunities to save off-chip memory read
and write by reusing vectors among processing modules. For this
challenge, we introduce the concept of vector streaming reuse and
analyze the dependencies in JPCG to decidewhen andwhich vectors
we may reused by processing modules via on-chip streaming and
store/load the other vectors that can not be reused to/from off-chip
memory. Based on the vector reusing/loading/storing analysis, we
form a decentralized vector scheduling to dissolve the global control
to vector control and computation modules to coordinate vector
flows among modules.

Challenge 3: Saving off-chip memory bandwidth and main-
taining double (FP64) precision convergence. The sparse matrix
with FP64 precision dominates memory footprint and thus memory
bandwidth in the sparse matrix vector multiply (SpMV) of JPCG.
Lower precision (less bits per data element) provides higher par-
allelism. However, lower precision leads to larger iteration count
for convergence or even failure to converge. To resolve this issue,
we present a mixed FP32/FP64 precision for SpMV in JPCG to save
memory bandwidth and achieve effective convergence as default
FP64 precision.

Our evaluation Xilinx U280 HBM FPGAs shows that compared to
the Xilinx HPC product XcgSolver, Callipepla achieves a speedup
of 3.94×, 3.36× higher throughput, and 2.94× better energy effi-
ciency. Compared to an NVIDIA A100 GPU which has 4× the mem-
ory bandwidth of Callipepla, we still achieve 77% of its throughput
with 3.34× higher energy efficiency.
2 CG SOLVER ACCELERATION CHALLENGES

& CALLIPEPLA SOLUTIONS
2.1 Conjugate Gradient Solver
For non-trivial problems, it is not practical nor hardware efficient
to directly inverse the matrix A to solve the linear system because
A can be very large in real-world applications. The conjugate gra-
dient [21] iteratively refines errors and reaches the solution. The
Jacobi preconditioner [34] approximates the matrix with its di-
agonal, which is trivial to invert. Using even this simple Jacobi
preconditioner helps reduce the iteration number and accelerate
the conjugate gradient method.

Algorithm 1 illustrates the Jacobi preconditioned conjugate gra-
dient algorithm (JPCG) for solving the linear system A®x = ®b. JPCG
takes as input the matrix A, the Jacobi preconditionerM, i.e., the
diagonal of A, a reference vector ®b, an initial solution vector ®x0,
convergence threshold 𝜏 , and a maximum iteration count 𝑁max. In
the algorithm, ®r represents the error of current solution vector ®x,
the cooperation of vector ®z, and vector ®p helps the solution vector
®x refine to the correct values at each iteration, and vector ®ap is the

Algorithm 1 Jacobi preconditioner conjugate gradient solver for
solving a linear system A®x = ®b.
Input: (1) matrix A, (2) Jacobi preconditioner M, (3) reference vector ®b, (4) initial

solution vector ®x0 , (5) convergence threshold 𝜏 , and (6) maximum iteration number
𝑁max .

Output: A solution vector ®x.
1: ®r← ®b − A®x0
2: ®z← M−1®r
3: ®p← ®z
4: rz← ®r⊤ · ®z
5: rr← ®r⊤ · ®r
6: for (0 ≤ 𝑖 < 𝑁max and rr > 𝜏 ) do
7: ®ap← A®p
8: 𝛼 ← rz/(®p⊤ · ®ap)
9: ®x← ®x + 𝛼®p
10: ®r← ®r − 𝛼 ®ap
11: ®z← M−1®r
12: rz_new← ®r⊤ · ®z
13: ®p← ®z + (rz_new/rz)®p
14: rz← rz_new
15: rr← ®r⊤ · ®r
16: end for

product of matrix A and vector ®p. Line 1 to 3 compute the initial
values of the vectors ®r, ®z, and ®p given the initial solution vector ®x0.
Lines 4, 5 initialize two scalars, rz and rr. In the main loop body,
the JPCG updates the vectors and scalars. Note that for the compu-
tation of ®z← M−1®r, becauseM is a diagonal matrix, the invert and
multiply operation becomes an element-wise divide. In summary,
the JPCG involves the coordination of multiple kernels. The sparse
matrix vector multiplication SpMV, dot product, and generalized
vector addition axpy are the core computations. Note, any practical
implementation of the JPCG, whether on a GPU or and FPGA, will
frequently invoke memory load operations to fetch the matrix and
the vectors, as well as stores on the vectors. This is because the size
of the linear system dwarfs the on-chip memory capacity.

We accelerate the JPCG in this work because:
• The JPCG is an important solver used in the industry. For example,
the JPCG is a solver in Ansys LS-DYNA [40], a finite element pro-
gram for engineering simulation. In Xilinx Vitis HPC Libraries [46],
the JPCG is the only linear system solver.
• The JPCG is hardware efficient. There are more powerful precon-
ditioners one could consider, which generally reduce the number
of iterations required to solver the linear system. For example, in-
complete Cholesky factorization (ICCG) [24] employs the lower
triangular matrix from an incomplete Cholesky factorization as the
preconditioner matrixM = L. But solving ®z← L−1®r incurs massive
dependency issues, thus, difficult to process in parallel in hardware.
We will address that in future work.
2.2 Prior CG Acceleration & Related Works
CG acceleration. [27] implemented the basic CG on FPGAs while
the problem dimension supported is less than 1,024, thus, not prac-
tical for real-world applications. [26] implemented a floating-point
basic CG for dense matrices. The supported matrix dimension is less
than 100, and it needed to generate a new hardware accelerator for
every new problem instance. [33] explored reducing FP mantissa
bits to reduce FP computation latency and resource. [32] imple-
mented CG for Laplacian systems. However, [32, 33] stored vectors
all on chip without off-chip memory optimization and was limited
to small size problems. Even the minimum throughput achieved by
Callipepla is 1.35× higher than themaximum throughput achieved
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by [32]. Besides, the reduced bit method of [33] led to considerable
iteration gaps compared with default FP64, but our mixed-precision
scheme makes the gap negligible. The GMRES leverages low pre-
cision in error correction computation and the inner loop [22] to
reduce processing time. It is unexplored how to co-optimize mixed
precision with memory accessing on the modern HBM FPGAs. All
the prior works [26, 27, 32, 33] did not optimize off-chip memory
accesses, did not leverage preconditioners to accelerate the conver-
gence, were not able to terminate accelerator on the fly, and were
not able to perform large scale CG (where the matrix dimension can
be a few hundred thousands to several millions). XcgSolver [46, 47]
by Xilinx is a state-of-the-art FPGA CG solver which can run real-
world large-scale CG. So we use XcgSolver as the baseline.
Other related works. GraphR [39] and GraphLily [23] are accel-
erators based on non-traditional (other than DDR) memories for
graph processing. Sextans [38] and Serpens [37] are SpMM/SpMV
accelerators on HBM memories, while Fowers et al. [14] designed
an SpMV accelerator on DDR memory. Song et al. [36] explored
mixed precision for conjugate gradient solvers in ReRAM. TAPA [6]
provides a framework for task-parallel FPGA programing, and Auto-
Bridge [17] optimized the floor planning for high level synthesis and
thus boosted the frequency of generated accelerators [16]. Cheng et
al. [2, 3] explored the combination of static and dynamic scheduling
in high-level synthesis (HLS). Coarse grain reconfigurable architec-
ture (CGRA) accelerators [25, 29, 30, 42–44] utilize instructions to
schedule computation and memory accesses.

2.3 Acceleration Challenges & Our Solutions
2.3.1 How to support an arbitrary problem and terminate accelera-
tion processing on the fly? Many previous FPGA accelerators sup-
port a fixed-size problem such as deep learning accelerators [10, 41,
49], stencil computation [4, 5], graph convolutional network acceler-
ation [48], and other applications [19]. FPGA accelerators that sup-
port fixed-size problems need to re-perform synthesis/place/route
flow for a new problem. The synthesis/place/route flow takes hours
to days to finish, which is not suitable for the frequent invocation
for different problems in data centers. Thus, the accelerator needs
to support an arbitrary problem once deployed. However, the JPCG
has six dimensions of freedom as Algorithm 1 illustrates, which
makes it challenging to support an arbitrary size problem.

Another unique challenge is designing an accelerator that is
able to terminate on the fly. Because the JPCG will terminate the
main loop once the residual is less than a preset threshold (Line
6 of Algorithm 1), which we do not know until we run the algo-
rithm/accelerator. In contrast, in deep learning acceleration, we
know the iteration numbers of all loops before the execution.
Callipepla Solution: Stream Centric Instruction Set. We
design a stream centric instruction set to control the processing
modules and data flows in the accelerators. We encode vector and
matrix size and data flow directions in the instruction. A global
controller is responsible to issue instructions. Therefore, we are
able to support an arbitrary problem for the JPCG and terminate
the accelerator. There are three principles for designing our stream
centric instruction set:
(1) Stream centric. Every instruction is to process some streams.
The JPCG is dealing with vectors and matrices and we transfer
those in streams. This principle naturally enables task parallelism.

(2) Data streamed processing. We introduce a processing model
that will either procure or consume streams in the accelerator. We
use an instruction to control the behavior of a processing module.
(3) Decoupled memory and computing. We separate the mem-
ory load/store from computation. In this way, we can benefit from
prefetching and overlapped computing and memory accessing.

Section 3 and Section 4 will discuss details on the designs of
Callipepla architecture, instructions, and processing modules.
2.3.2 How to coordinate long-vector data flow among processing
modules? The vector length in a real-world JPCG problem could
be a few thousand to more than one million as shown in Table 3.
Because we process floating-point values, one vector size will be
up to tens of megabytes which exceeds the on-chip memory size.
One straightforward way is that we always store an output vector
from a processing module to the off-chip memory and load an
input vector from the off-chip memory to a module. However, there
are reuse opportunities to save some off-chip memory load and
store in JPCG. For example, the output vector ®ap by Line 7 will be
consumed by Line 8 and Line 10. But it is non-trivial to reuse ®ap for
Line 10 during streaming because there is a dependence (i.e., 𝛼) of
Line 10 on Line 8, and Line 8 will not produce 𝛼 until it consumes
the whole vector ®ap. As a result, we need to store the whole ®ap
on chip for reusing, which is not practical. Therefore, we have a
dilemma: (1) vector ®ap exceeds the on-chip memory size so we
need to store it in the off-chip memory, but (2) we need to reuse ®ap
to reduce off-chip memory accesses, however, (3) the dependence
issue requires us to store the whole vector ®ap on chip or there
will be no reuse. Therefore, it is a challenge to coordinate vector
flows among processing modules for reusing while resolving the
dependence issue at the same time.
Callipepla Solution: Decentralized Vector Scheduling. In
Section 5 we will introduce the concept of vector streaming reuse
and analyze the dependency in the JPCG and partition themain loop
in three phases so that we will reuse vectors within the same phase
via on-chip streaming while store/load vectors to/from memory
across phases. Based on the vector reusing/loading/storing, we will
form a decentralized vector scheduling to dissolve the global control
to vector control and computation modules to coordinate vector
flows among modules.
2.3.3 How to save off-chip memory bandwidth and maintain double
(FP64) precision? To represent a double-precision (FP64) non-zero,
we need 32 bits for the row index, 32 bits for the column index,
and 64 bits for the FP64 value. So we need 128 bits to represent an
FP64 non-zero. Similarly, we need 96(=32+32+32) bits to represent
an FP32 non-zero. The memory port has a limited bit width. For
example, the AXI bus width is up to 512 bits [7, 8]. Therefore, lower
precision (less bits per data element) provides higher parallelism.
However, the default JPCG requires the FP64 precision for con-
vergence. There are many vectors and one sparse matrix in the
JPCG. How can we configure the precision (FP32 or FP64) for the
vectors and matrix in the JPCG to save memory bandwidth but also
converge as effective as the default FP64 precision?
Callipepla Solution: Mixed-precision SpMV. Because the
JPCG refines vectors in the main loop, we must maintain all vectors
in FP64 at the end of each iteration. The SpMV takes as input one
vector ®x and one sparse matrix A and output a vector ®y. Among
the two vectors and one matrix, the sparse matrix dominates the
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Figure 1: Top architecture of Callipepla accelerator.
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We present Callipepla, an accelerator for conjugate gradient solver.
FPGA acceleration of conjugate gradient solver faces three chal-
lenges: (1) how to support an arbitrary problem and terminate ac-
celeration processing on the fly, (2) how to coordinate long-vector
data flow among processing modules, and (3) how to save off-chip
memory bandwidth and maintain double (FP64) precision. To tackle
the three challenges, we present (1) a stream-centric instruction
set for efficient processing and control, (2) a decentralized vector
flow scheduling to coordinate vector data flow among modules and
further reduce off-chip memory accesses, and (3) a mixed FP32/FP64
precision scheme to save bandwidth and achieve default FP64 com-
putation precision. The evaluation shows that compared to Xilinx
HPC product XcgSolver Callipepla archives 3.94x speedup, 3.36x
throughput, and 2.94x energy efficiency.
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Listing 1 Default vector add and the vector add in Callipepla.

1 //Type-I: vector control instructions
2 struct InstVCtrl {
3 bool rd; bool wr; int base_addr; int len; ap_uint<3> q_id;
4 };
5
6 //Type-II: computation instructions
7 struct InstCmp {
8 int len; double alpha; ap_uint<3> q_id;
9 };
10
11 //Type-III: memory instructions
12 struct InstRdWr {
13 bool rd; bool wr; int base_addr; int len;
14 };

1 INTRODUCTION

REFERENCES

Figure 2: Three instruction types in Callipepla.
Table 1: Three mixed-precision
schemes for SpMV ®y = A®x.

A ®x ®y
Default FP64 FP64 FP64 FP64
Mixed-V1 FP32 FP32 FP32
Mixed-V2 FP32 FP32 FP64
Mixed-V3 FP32 FP64 FP64

memory footprint. Thus,
we consider using FP32
for the sparse matrix. For
the SpMV input/output
vectors, we have two pre-
cision options – FP32 or
FP64. Thus, we have three mix-precision schemes, illustated in Ta-
ble 1. Noted the mixed precision only applies to the SpMV, and we
always maintain the the vectors in the main loop in FP64. We will
discuss the mixed precision in Callipepla and the hardware design
for supporting mixed-precision SpMV in Section 6.

3 CALLIPEPLA ARCHITECTURE
Figure 1 shows the top architecture of Callipepla accelerator
which is a modular architecture. There are four categories of mod-
ules – (1) computation units, (2) read/write modules, (3) vector
control modules, and (4) a global controller. All modules are con-
nected via FIFOs.

Computation modules perform the vector/matrix computa-
tions.We have eight computationmodules – (1) M1: SpMV, perform-
ing the computation of Line 7 in Algorithm 1, (2) M2: dot product
alpha, performing the computation of Line 8, (3) M3: update x, per-
forming the computation of Line 9, (4) M4: update r, performing the
computation of Line 10, (5) M5: left divide, performing the computa-
tion of Line 11, (6) M6: dot product rz, performing the computation
of Line 12, (7) M7: update p, performing the computation of Line 13,
and (8) M8: dot product rr performing the computation of Line 15.
For Line 1 to Line 5, we reuse the eight computation modules to per-
form the computation. We leverage the open-sourced Serpens [37]
accelerator for SpMV computation and design the modules M2 to
M8 for Callipepla.

Memory read/write modules move data from off-chip mem-
ory to on-chip modules or vice versa. We use the high bandwidth
memory on Xilinx U280 FPGA as our off-chip memory. We have
sixteen read A modules (RdA0 to RdA15) to read non-zeros to the
SpMV module M1 and a Rd M to read the Jacobi matrix. There are
five Rd/Wr (read-and-write) modules for vectors ®ap, ®p, ®x, ®r, and ®z,
because the five vectors need both read and write operations. We
connect each read/write module to one HBM channel.

Vector control modules VecCtrl ap, p, x, r, and z coordinate
vector flows between one corresponding read/write modules to

Global Controller

Rd/WrHBM VecCtrl-1

Comp M-1 Comp M-2

Rd/WrHBM VecCtrl-2

InstCmpInstCmp

InstVCtrl

InstVCtrl

InstRdWr

InstRdWr

rr

resp

v1

v1
v1

v2

v2

Figure 3: Processing model of stream based instructions.
multiple computation units. For example, according to Algorithm 1,
M1 (SpMV) produces vector ®ap and M2 (dot product alpha) and M4
(update r) consume ®ap. So the module VecCtrl ap coordinates ®ap
vector flows among Rd/Wr ap and three computation modules M1,
M2, and M4.

The global controller issues instructions to computation mod-
ules and vector control modules. The global controller also performs
some scalar computation such as Line 14 of Algorithm 1 and com-
pares 𝑟𝑟 > 𝜏 to decide whether to terminate or not.

4 STREAM CENTRIC INSTRUCTION SET
4.1 Three Instruction Types
We define the instruction types as illustrated in Figure 2 for Cal-
lipepla. They are (1) Type-I: vector control instructions, (2) Type-II:
computation instructions, (3) Type-III: memory instructions.
4.1.1 Type-I: vector control instructions. We use vector control
instructions to tell a vector control module where and how to deliver
a vector. Type-I instructions have five components – (1) int rd and
(2) int wr encode whether to read or write or simultaneously read
and write a vector, (3) int base_addr encodes the base address of
a vector in the memory, (4) int len encodes the vector length, and
(5) ap_uint<3> q_id encodes the index of a destination module
where to send the vector.
4.1.2 Type-II: computation instructions. We use computation in-
structions to trigger the execution of a computation module and
where to send the output vector. Type-II instructions have three
components – (1) int len encodes the vector length, (2) double
alpha a double-precision constant scalar involved in the computa-
tion, and (3) ap_uint<3> q_id encodes the index of a destination
module where to send the vector. Note that the computation instruc-
tions do not have operation code because a computation module in
the accelerator only has one function.
4.1.3 Type-III: memory instructions. We use memory instructions
to read a vector from off-chip memory to a vector control module
or write a vector from a vector control module to off-chip memory.
Type-III instructions have three components – (1) int rd and (2)
int wr encodes whether to read or write or simultaneously read
and write a vector, (3) int base_addr encodes the base address of
a vector in the memory, and (4) int len encodes the vector length.

4.2 Processing Model
Figure 3 displays an example where we process two vectors with
two computation modules. A global controller issues vector con-
trol instructions to the two vector control modules VecCtrl-1 and
VecCtrl-2. v1 and v2 are two vectors, rr is a scalar, and resp is a
memory response.
Vector flow. Instructions control vector flow among modules in a
streaming fashion. For example, if we are reading vector v1 with
a length 100 from memory to Comp M-2, the controller will issue
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an instruction InstVCtrl{rd=1, wr=0, base_addr=0, len=100,
q_id=1} to VecCtrl-1. Here, q_id=1 indicates the destination mod-
ule is M-2 rather than M-1. Then VecCtrl-1 will issue a memory
instruction InstRdWr{rd=1, wr=0, base_addr=0, len=100} to
the memory module. Next, vector v1 flows from the memory to
Comp M-2. Another example is that the controller issues a com-
putation instruction InstCmp{len=100, alpha=2.0, q_id=1} to
Comp M-2. We assume M-2 performs v2 = v2+𝛼v1. Then M-2 will
consume the input v1 and v2 vectors and deliver the result vector
v2(=v2 + 2.0*v1) to M-1.
Scalar and memory response.We update all scalars in the global
controller. For instance, Comp M-1 delivers a scalar rr to the con-
troller and the controller will decide whether to terminate the
accelerator or not. At the memory modules, we always send out
a response to the controller if we are processing a memory write
operation. The response message will help the controller to main-
tain memory consistency when multiple modules read and write
the same vectors.
Overlapped execution and prefetching. The models involved
are working in parallel, i.e., task parallelism, because we never
cache a whole vector on chip. One element in an input stream will
be consumed by a module and sent to an output vector flow at each
cycle. So the modules in Callipepla accelerators work with an II=1
pipeline1. We always prefetch vectors in the processing. We enable
prefetching by issuing multiple instructions. For example, if Comp
M-1 needs input vector v1 from memory and input vector v2 from
Comp M-2, along with the computation instruction to M-2, we also
issue the vector control instruction to the vector control module to
read v1 to M-1 for prefetching.
Processing rate matching. Prior work [9] processing rate match-
ing of modules in streaming applications. In this work, because we
do not cache any vector on chip and we overlap the execution, we
match the vector input and output streaming rate. Therefore, the
bottleneck becomes the connections between a memory module
and a memory channel. Although there are modules that use multi-
ple channels, we can simplify the connection as one-module-one-
channel because we can view a multi-channel module as multiple
one-channel modules and they are connected via on-chip connec-
tions. Thus, we can derive the accelerator frequency that matches
the memory bandwidth as

𝑓 = 𝐵𝑊 /𝑟, (1)

where 𝐵𝑊 is per channel memory bandwidth and 𝑟 is the maximum
memory datawidth. For a Xilinx U280 HBM FPGA [45] which has
32 HBM channels and 460 GB/s memory bandwidth and supports a
512-bit (64-byte) memory width [7, 8], the matching frequency is
𝑓 = (460𝐺𝐵/𝑠/32)/64/𝐵 = 225 MHz.

4.3 The Global Controller Code
Figure 4 shows the instruction code in the global controller. We only
show the main loop control code and the intrusions for vector con-
trol and computation for module M3 and M8. The code in Figure 4

1For the dot product modules, we have two phases. Phase I multiplies input and
accumulates in a cyclic delay buffer with an II=1 pipeline. Phase II accumulates contents
in the delay buffer with a larger II=5 pipeline because of the read after write dependency
and the FP ADD latency. The Phase II cycle count is fixed, i.e., 5∗𝐿 where 𝐿 is the delay
buffer size, for any arbitrary length vector. So the Phase II cycle count is negligible
compared to the Phase I cycle count.
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Listing 1 Default vector add and the vector add in Callipepla.

1 void global_controller(...) {
2 ...
3 for (int rp = -1; rp < ite_max; ++rp) {
4 ...
5 if (rp >= 0) {
6 //M2: alpha = rz / (p' * Ap)
7 ...
8 //M3: x = x + alpha * p
9 ctrlv_X_inst.write({true, true, 0, M, 0});
10 ctrlv_P_inst.write({true, false, 0, M, 2});
11 updtx_inst_inst.write({M, alpha, 0});
12 resp_X.read();
13 }
14 ...
15 //M8: res = r' * r
16 ctrlv_R_inst.write({true, false, 0, M, 3});
17 dot_res_inst.write({M, 0, 0});
18 double rr = fifo_rr.read();
19 bool termination = (rr < th_tau) | (rp + 1 == ite_max);
20 if (termination) break;
21 //M5: z = diagA \ r
22 ...
23 }
24 }

1 INTRODUCTION

REFERENCES

Figure 4: Controller code.
is quite similar to Algorithm 1 because Callipepla’s instructions
make it easy for users to control the accelerators. In the controller
code, we have two optimizations – (1) We merge Line 1 to 5 of
Algorithm 1 into the main for loop to reuse the modules. The if
clause (Line 5 to 13) in Figure 4 skips some modules in iteration
(rp=-1) so that we can perform the computation of Line 1 to 5 of
Algorithm 1 using the main for loop. (2) We move the last module
M8 which is the computation of residual before M5 to skip the
computations of M5 to M7 once the solver converges.
5 VECTOR STREAMING REUSE &

DECENTRALIZED VECTOR SCHEDULING
5.1 Vector Streaming Reuse
The accelerator has to store long vectors to off-chip memory be-
cause of limited on-chip memory size. However, there are reusing
opportunities so that we can avoid unnecessary load/store and en-
able modules working in parallel. Vector streaming reuse (VSR)
means vectors are reused in a streaming fashion by processing
modules via on-chip streams/FIFOs.
•What is VSR? A processing module (PM) consumes an element
of a vector from an input stream/FIFO and produce an element (for
a processed vector) or duplicate an element (for the input vector) to
an output stream/FIFO to another PM. The PMs consume/produce
vector elements in pipeline and there may be multiple input/output
streams/FIFOs connected to one PM.
•When can VSR? (1) Multiple PMs consume the same input vec-
tor(s), (2) a PM consumes vector(s) that are produced by some other
PMs, and (3) the difference of accessing indices of two input vectors
is within the on-chip (or stream/FIFO) memory budget.
•When can not VSR? (1) The computation of a scalar requires a
whole vector and PMs has dependency on the scalar can not reuse
the vector and (2) the difference of accessing indices of two input
vectors is out of the on-chip (or stream/FIFO) memory budget.
5.2 Three Computation Phases
We analyze the scalar dependency and then divide the eight compu-
tation modules into three phases as shown in Figure 5. The scalar
dependency is the critical issue that prevents us from reusing vec-
tors across computation modules. For example, we can not reuse the
input vector ®ap of M2 to M4 (which also takes ®ap as input) because
M4 depends on alpha and alpha depends on the whole vector ®ap.
So we move M4 to Phase-2. Because M5/6/8 depends on vector ®r
from M4 so we direct M5/6/8 to Phase-2. Similarly, we organize the
computations in Phase-3 according to the dependency on scalar rz.
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M1 ap = A * p

M2 alpha = rz/(p * ap)

M3 x = x + alpha * p

M4 r = r - alpha * ap

M5 z = M \ r

M7 p = z + (rz/rz_old) * pM6 rz = r * z

Rd - p Wr - ap

apRd - p

M8 res = r * r

Rd - r Rd - ap

Rd - M r

z r

r

M4 r = r - alpha * ap

M5 z = M \ r

Rd - r Rd - ap

Rd - M r

zRd - p Wr - r

Wr - ppRd - x

Wr - x
alpha 

alpha 

rz 

rz 

Phase-1.1

Phase-1.2

Phase-2 Phase-3

Figure 5: We divide computation modules into three phases
because of the scalar dependency. Two key properties are –
(1) a scalar dependency separates two phases and (2) vectors
within a phase can be reused by modules in that phase.

5.3 Recomputing to Save Off-Chip Memory
Among all vectors, vector ®z is a special one because ®z is an inter-
mediate vector in the main loop and it is not reused between two
iterations. Thus, we reduce the off-chip memory allocation for ®z
by recomputing in Phase-3. In this way, we save memory chan-
nels. Shown in Figure 5, at Phase-2 after computation module M5
produces ®z, we do not write ®z to memory. At Phase-3, because M7
requires ®z as input, so we reperform both M5 and M4. M4 is the
dependency of M5 to produce vector ®z to M7.
5.4 VSR and Memory Accessing
After forming the three computation phases, we determine the VSR
and the memory accessing for vectors that we have to do. • Phase 1:
In Phase-1.1 we perform M1 and in Phase-1.2 we perform M2. We
reuse the ®ap produced by M1 to M7 to avoid reading the ®ap from
off-chip memory. We cannot reuse vector ®p fromM1 for M2 because
M1 outputs ®ap only after consuming the whole vector ®p. We write
vector ®ap to memory. • Phase 2: We reuse vector ®r by all the four
modules M4/5/6/8. M4 consumes one entry from the input stream of
vector ®r from memory and immediately M4 sends the ®r entry to the
next module M5. M5 and M6 perform the same consume-and-send
on vector ®r so that we only need to read vector ®r from memory
once. In this phase, we also have to read vector M and vector ®ap
from memory once. • Phase 3: Similar to Phase 2, M4 and M5 reuse
vector ®r and M7 and M3 reuse vector ®p. We have to read vector ®r,
M, ®p, and ®x from memory and write vector ®r, ®p, and ®x to memory.
5.5 Decentralized Vector Scheduling
The VSR makes the control complicated because we must handle
both on-chip and off-chip vector flows among all computation and
vector control modules. We present decentralized vector scheduling
to relieve the pressure faced by a centralized controller. Another
benefit is that decentralized vector scheduling is better for the
controller routing because there are 23 FIFOs for a centralized con-
troller. We dencentralize all vector scheduling into each individual
vector control module (vector ®p, ®r, M, ®x, and ®ap) and into the com-
putation modules (M1 to M8) show in Figure 6. We use a finite state
machine (FSM) to control the vector flow at each module. Note that
decentralized vector scheduling maintains all dependencies.
Vector scheduling in vector control modules. We use the FSM
for ®p in Figure 6 (a) to illustrate vector scheduling. According to
Figure 5, there are three memory operations for ®p: (1) Rd to M1 at

Rd->M1

Rd->M2

RdWr<->M7

Rd->M4

RdWr<->M4

(a) vector p (b) vector r (c) vector M
Rd->M5

Rd->M5

RdWr<->M3

(d) vector x

Rd->M1

Rd->M4

(e) vector ap
->p ap->Mem, ap->M2

(f) M1

->p, ->ap

(g) M2

(i) M4
->r,->ap r->M5

(h) M3
->p,->x x->Mem

->r,->ap r->M5

(j) M5
->r,->M z->M6,r->M6

->r,->M z->M7,r->Mem

->r,->z r->M8

(k) M6
->p,->z p->Mem

(l) M7
->r

(m) M8
Rd->M4

Figure 6: FSMs for decentralized vector scheduling in vector
control modules (a) – (e) and computation modules (f) – (m).
For vector control modules, Rd->Mx means to read a vector
from memory to computation module Mx, and RdWr<->Mx
means to read andwrite a vector to/fromMx from/tomemory.
For computation modules, the left half block records input
vectors and the right half block records output vectors and
destination modules for VSR.
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(e)
Figure 7: (a) A deadlock because of data arriving too late in
slow FIFO, (b) increasing fast FIFO depth to resolve deadlock,
(c) default one channel, (d) and (e) double channel design.

Phase-1.1, (2) Rd to M2 at Phase-1.2, and (3) Rd and Wr to/from M7
at Phase-3. Thus, we have the FSM in Figure 6 (a) for ®p scheduling.
Vector scheduling in computation modules.We use Figure 6 (j)
the FSM for M5 to illustrate the scheduling. According to Figure 5,
at Phase-2, M5 takes as inputs the flows of the vectorsM and ®r, and
outputs ®z and ®r to M6, resulting in the first scheduling state. At
Phase-2, M5 uses the flows of vectorM and ®r as inputs, but outputs
®z to M7 and ®r to memory, completing the second scheduling state.

Without the decentralized vector scheduling, the accelerator
accesses vectors 19 times (14 reads and 5 writes). With the decen-
tralized vector scheduling, the accelerator accesses vectors 14 times
(10 reads and 4 writes).

5.6 Avoiding Deadlock
A deadlock may occur when we reuse more than one vector to a
destination module. In Figure 7 (a), the default FIFO depth is 2 and
the M5 (left divide) pipeline depth is 𝐿 = 33. Thus, when the fast
side ®r FIFO is full but the slow ®z FIFO is still empty, a deadlock
occurs because M5 cannot write to ®r FIFO and M6 cannot consume
®r FIFO entries (because ®z FIFO is empty). To resolve the deadlock,
we increase the fast FIFO depth to >= 𝐿 + 1 as shown in Figure 7 (b).
As a result, during cycle 0 to 𝐿 M5 can write FIFO ®r despite FIFO ®z
is empty, but after cycle 𝐿 + 1, M5 can write both FIFO ®r and ®z and
M6 can read both FIFOs.
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5.7 Double Channel Design
By default a memory module reads and writes to the same memory
channel as shown in Figure 7 (c), which doubles the memory latency
when we perform both read and write on a vector. Inspired by the
widely used on-chip double buffer design in FPGA accelerators [35,
41, 49, 50], we present a double off-chip channel design. In Figure 7
(d) and (e), we connect two channels to a memory module and
at the iteration 𝑡 we read vector ®v𝑡 from channel 0 and write the
updated ®v𝑡+1 to channel 1. At the iteration 𝑡 + 1 we read ®v𝑡+1 from
channel 1 and write the updated ®v𝑡+2 to channel 0. Therefore, we
reduce the memory latency by half and maintain the inter-loop
vector dependency.
6 MIXED-PRECISION SPMV
Table 1 presents three mixed precision schemes and the default
FP64 precision. Overall, a scheme with more data in FP64 is less
hardware efficient because it requires larger memory capacity and
higher memory bandwidth but the accuracy is higher. Mixed-V1
uses FP32 for all values in the matrix and vectors. Although Mixed-
V1 is the most memory saving scheme, it is also the most inaccurate
scheme. Because the JPCG is sensitive to vector precision, Mixed-V2
utilizes FP64 for the SpMV output vector. Mixed-V3 utilizes FP64
for both SpMV input and output vectors.Among the three mixed-
precision schemes, Mixed-V3 does not sacrifice vector precision
and at the same time saves memory for the sparse matrix. Note
that in SpMV the sparse matrix dominates the memory footprint.
Therefore, we use Mixed-V3 for the Callipepla accelerator for both
memory efficiency and computation accuracy.
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Figure 8: Mixed FP32/FP64
SpMV based on Serpens [37].

Figure 8 illustrates the
mixed-precision SpMVmod-
ule architecture in Cal-
lipepla. We leverage the
Serpens [37] architecture.
Each SpMV module is con-
nected to one memory
channel and has eight par-
allel processing engines.
The input to a processing
engine is a 64-bit element
which contains a 14-bit col-
umn index, an 18-bit row index, and an FP32 value. For the mixed-
precision SpMV, we (1) store the input FP64 vector in an on-chip X
memory implemented by BRAMs, and (2) buffer the output FP64
vector in an on-chip Ymemory implemented by URAMs. The depths
of the X and Y memories are 4K and 24K respectively. In the pro-
cessing pipeline, we (1) cast the FP32 sparse value into a FP64 value,
(2) use the column index to fetch the corresponding input element
from the X memory, (3) then multiply the two FP64 scalars, and (4)
accumulate the result to the Y memory entry indexed by row.
7 EVALUATION
7.1 Evaluation Setup
7.1.1 Benchmark Matrices. We evaluate on 36 real-word sparse
matrices from SuiteSparse [11]. Table 3 lists the name, row/ col-
umn number, number of non-zeros (NNZ), and the ID used in this
paper of each matrix. Matrix M1 to M18 are the benchmarking
matrices that the Xilinx Vitis HPC [46, 47] XcgSolver used. Their

Table 2: The process node, frequency, HBMmemory capacity,
memory bandwidth, and power consumption of the NVIDIA
A100, XcgSolver, SerpensCG, and Callipepla.

Process Frequency Memory Bandwidth Power
XcgSolver 16 nm 250 MHz 8 GB 331 GB/s 49 W
SerpensCG 16 nm 238 MHz 8 GB 345 GB/s 43 W
Callipepla 16 nm 221 MHz 8 GB 374 GB/s 56 W
NVIDIA A100 7 nm 1.41 GHz 40 GB 1.56 TB/s 243 W

row/column numbers rage from 3,920 to 23,052 and NNZ is up to
6.90 M. To comprehensively evaluate the accelerators, we select 18
more large-scale matrices from SuiteSparse. The row/column num-
bers of Matrix M19 to M36 span from 123 K to 1.56 M and the NNZ
is up to 114 M. The 36 sparse matrices cover a wide range of ap-
plications including structural problems, thermal problems, model
reduction problems, electromagnetics problems, 2D/3D problems,
and other engineering and modeling problems.

We evaluate the Jacobi Preconditioner Conjugate Gradient (JPCG)
Solver. We set the reference vector ®b to an all-one vector and the
initial ®x to an all-zero vector. We set the stop criteria as the residual
|®r|2 < 10−12. We also set a 20K maximum iteration number no
matter if the solver converges or not.
7.1.2 Accelerators/Platforms. We evaluate three FPGA JPCG accel-
erators – XcgSolver, SerpensCG, and Callipepla and a GPU JPCG.
We prototype all three FPGA JPCG accelerators on a Xilinx Alveo
U280 FPGA [45]. The GPU used is an NVIDIA A100. Table 2 shows
the specifications of the four evaluated accelerators/platforms. A100
GPU used more advanced process node than that of U280 FPGA.
FPGAs. The design details of the three FPGA accelerators are:
• XcgSolver: XcgSolver is a JPCG solver from Xilinx Vitis HPC [46,
47]. XcgSolver utilizes Vitis BLAS and SPARSE implementations for
the SpMV and vector processing. We obtain the source code from
the Xilinx Vitis Libraries git repo. XcgSolver uses the FP64 precision
for all floating-point values. We use XcgSolver as a baseline in the
evaluation.
• SerpensCG: We employ the Serpens [37] for SpMV processing
and modify Serpens to support the FP64 processing. The precision
of all floating-point processing in SerpensCG is FP64. Although Ser-
pens [37] is a powerful SpMV(FP32) accelerator, it does not support
the JPCG. So we build SerpensCG as a strong baseline to study the
performance gap of a JPCG accelerator based on Serpens SpMV
accelerator with minimum effort between Xilinx XcgSolver and a
fully optimized JPCG accelerator, i.e., Callipepla. Therefore, Ser-
pensCG only leverages the stream based instruction set (presented
in Section 4) for the JPCG without mixed precision or the vector
related optimizations.
• Callipepla: Callipepla is a fully optimized JPCG accelerator
plus mixed precision (presented in Section 6) and the vector related
optimizations (introduced in Section 5. We use Mix-V3 mixed pre-
cision where only the SpMV non-zero values are in FP32 and all
other processing is in FP64 for Callipepla.

All three accelerators allocate 16 HBM channels for SpMV non-
zero processing. We build SerpensCG and Callipepla with TAPA
framework [6, 16] and leverageAutoBridge [17] for frequency boost-
ing [18]. We use Xilinx Vitis 2021.2 for back-end FPGA implementa-
tion for all three accelerators. We utilize TAPA runtime to measure
the FPGA accelerator execution latency and Xilinx Board Utility
xbutil to report the power information.
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Table 3: Matrix name, row/column number, and number of non-zeros (NNZ) of the evaluated matrices.
ID Matrix #Row NNZ ID Matrix #Row NNZ ID Matrix #Row NNZ
M1 ex9 3,363 99,471 M2 bcsstk15 3,948 117,816 M3 bodyy4 17,546 121,550
M4 ted_B 10,605 144,579 M5 ted_B_unscaled 10,605 144,579 M6 bcsstk24 3,562 159,910
M7 nasa2910 2,910 174,296 M8 s3rmt3m3 5,357 207,123 M9 bcsstk28 4,410 219,024
M10 s2rmq4m1 5,489 263,351 M11 cbuckle 13,681 676,515 M12 olafu 16,146 1,015,156
M13 gyro_k 17,361 1,021,159 M14 bcsstk36 23,052 1,143,140 M15 msc10848 10,848 1,229,776
M16 raefsky4 19,779 1,316,789 M17 nd3k 9,000 3,279,690 M18 nd6k 18,000 6,897,316
M19 2cubes_sphere 101,492 1,647,264 M20 cfd2 123,440 3,085,406 M21 Dubcova3 146,689 3,636,643
M22 ship_003 121,728 3,777,036 M23 offshore 259,789 4,242,673 M24 shipsec5 179,860 4,598,604
M25 ecology2 999,999 4,995,991 M26 tmt_sym 726,713 5,080,961 M27 boneS01 127,224 5,516,602
M28 hood 220,542 9,895,422 M29 bmwcra_1 148,770 10,641,602 M30 af_shell3 504,855 17,562,051
M31 Fault_639 638,802 27,245,944 M32 Emilia_923 923,136 40,373,538 M33 Geo_1438 1,437,960 60,236,322
M34 Serena 1,391,349 64,131,971 M35 audikw_1 943,695 77,651,847 M36 Flan_1565 1,564,794 114,165,372

Table 4: Solver time (in seconds) of the four accelerators: XcgSolver, SerpensCG, Callipepla, and A100 GPU. The speedup is
the solver time of an accelerator/platform normalized to the XcgSolver solver time. We highlight an evaluation datum when it
is the fastest among all four accelerators in blue and an evaluation datum when it is slower than the baseline XcgSolver in red.
We also highlight the matrices where the XcgSolver failed.

M1 M2 M3 M4 M5 M6 M7 M8 M9
XcgSolver(s) 8.973E-1 4.151E-2 3.634E-2 3.825E-3 3.792E-3 5.219E-1 9.691E-2 1.268 3.577E-1
SerpensCG(s) 8.010E-1 2.787E-2 2.357E-2 2.656E-3 2.656E-3 4.217E-1 7.386E-2 1.245 2.719E-1

Speedup 1.120× 1.490× 1.542× 1.440× 1.428× 1.238× 1.312× 1.018× 1.315×
Callipepla(s) 2.602E-1 9.200E-3 6.579E-3 9.261E-4 9.376E-4 1.408E-1 3.020E-2 4.213E-1 1.021E-1

Speedup 3.449× 4.512× 5.524× 4.131× 4.045× 3.705× 3.209× 3.009× 3.502×
A100(s) 1.752 5.430E-2 1.510E-2 3.681E-3 2.455E-3 8.292E-1 2.076E-1 1.348 5.183E-1
Speedup 5.120E-1× 7.645E-1× 2.406× 1.039× 1.545× 6.294E-1× 4.667E-1× 9.407E-1× 6.901E-1×

M10 M11 M12 M13 M14 M15 M16 M17 M18 GeoMean
XcgSolver(s) 1.613E-1 2.309E-1 3.336 3.333 4.540 1.246 4.883 3.813 1.018E+1
SerpensCG(s) 1.162E-1 2.019E-1 4.103 2.983 5.333 1.050 5.076 3.238 7.970

Speedup 1.389× 1.143× 8.130E-1× 1.117× 8.513E-1× 1.187× 9.621E-1× 1.178× 1.277× 1.194×
Callipepla(s) 4.103E-2 7.104E-2 1.488 1.243 1.872 4.577E-1 1.853 1.580 3.785

Speedup 3.932× 3.249× 2.242× 2.681× 2.425× 2.723× 2.636× 2.413× 2.689× 3.241×
A100(s) 1.639E-1 1.227E-1 2.074 1.298 1.903 6.153E-1 2.052 1.284 1.924
Speedup 9.844E-1× 1.882× 1.609× 2.568× 2.386× 2.025× 2.379× 2.970× 5.291× 1.395×

M19 M20 M21 M22 M23 M24 M25 M26 M27
XcgSolver(s) 1.004E-1 1.225E+1 9.410E-1 1.025E+1 FAIL 1.187E+1 5.534E+1 3.291E+1 3.836
SerpensCG(s) 2.956E-2 9.657 3.333E-1 7.436 4.984 9.353 5.055E+1 2.799E+1 3.138

Speedup 3.396× 1.268× 2.823× 1.378× — 1.269× 1.095× 1.176× 1.223×
Callipepla(s) 9.033E-3 2.928 1.039E-1 2.394 1.463 2.923 1.334E+1 7.558 1.056

Speedup 1.111E+1× 4.182× 9.053× 4.280× — 4.061× 4.150× 4.355× 3.632×
A100(s) 5.880E-3 1.175 5.671E-2 9.354E-1 4.183E-1 9.227E-1 1.577 1.081 4.502E-1
Speedup 1.707E+1× 1.043E+1× 1.659E+1× 1.095E+1× — 1.287E+1× 3.511E+1× 3.045E+1× 8.522×

M28 M29 M30 M31 M32 M33 M34 M35 M36 GeoMean
XcgSolver(s) FAIL 1.956E+1 1.925E+1 FAIL FAIL FAIL FAIL FAIL FAIL
SerpensCG(s) 1.578E+1 1.189E+1 1.968E+1 6.738E+1 1.314E+2 3.134E+1 2.025E+1 1.021E+2 2.462E+2

Speedup — 1.645× 9.783E-1× — — — — — — 1.490×
Callipepla(s) 5.508 4.548 6.291 2.277E+1 4.380E+1 1.044E+1 7.013 3.976E+1 8.970E+1

Speedup — 4.300× 3.060× — — — — — — 4.787×
A100(s) 1.400 1.266 1.227 4.040 7.548 1.710 1.153 7.043 1.673E+1
Speedup — 1.545E+1× 1.568E+1× — — — — — — 15.72×

NVIDIA A100 GPU.We build a GPU JPCG with CUDA version 11
on an NVIDIAA100 GPU.We use cuSPARSE routine cusparseSpMV
to compute SpMV and cuBLAS routines cublasDaxpy, cublasDscal,
cublasDdot, and cublasDcopy for vector processing. We measure
the GPU execution timewith cudaEventElapsedTime and the GPU
power with NVIDIA System Management Interface nvidia-smi.

The NVIDIA A100 GPU is much more powerful than the FPGA
accelerators as the specifications in Table 2 show. All four accelera-
tors/platforms use HBM2 for memory, but the A100 GPU memory
is 4× in terms of capacity and > 4× in terms of bandwidth com-
pared with the three FPGA accelerators. Meanwhile, the A100 GPU
frequency is 5 ∼ 6× of the FPGA accelerator frequency. However,
in the following section we will show that the FPGA accelerators
are able to outperform the GPU in many aspects of the JPCG.

7.2 Solver Performance
We compare the solver time of the 36 evaluated matrices on the four
accelerators/platforms in Table 4. The solver time is the measured
kernel time that a kernel reaches the convergence criteria or the
maximum iteration number. We also report the speedup which is

defined as (the execution time of an accelerator/platform) / (the
execution time of XcgSolver).
7.2.1 Matrix M1 to M18, the 18 medium-scale sparse matrices used
by Xilinx Vitis. Overall, SerpensCG, Callipepla, and A100 GPU
achieve 1.194×, 3.241×, and 1.395× geomean speedup compared
with XcgSolver. Callipepla is up to 5.524× faster compared with
XcgSolver and outperforms XcgSolver on all 18matrices. Among the
18 matrices, Callipepla is the fastest and outperforms A100 GPU
on 16 matrices (M1 to M16). SerpensCG achieves 1.194× speedup
compared with XcgSolver, which indicates that one can leverage
the Serpens [37] to support the FP64 JPCG with minimum efforts
and realize a better performance than Xilinx’s XcgSolver. If we
compare Callipepla with SerpensCG, Callipepla is 2.71× faster
than SerpensCG. The performance gain illustrates that there is still
speedup potential although SerpensCG is faster than XcgSolver,
and the mixed precision and the vector related optimizations leads
to an even higher performance. Meanwhile, Callipepla is 2.32×
compared with the A100 GPU performance.
7.2.2 Matrix M19 to M36, 18 large-scale sparse matrices. Overall,
SerpensCG, Callipepla, and A100 GPU achieve 1.490×, 4.787×,
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Table 5: Throughput, fraction of peak (FoP), and energy effi-
ciency of the four accelerators/platforms.

Throughput – GFLOP/s
Peak Min Max GeoMean

A100 29,200 2.693 179.8 29.53 (4.379×)
XcgSolver 410 2.065 19.43 6.743 (1.000×)
SerpensCG 410 2.734 20.76 7.848 (1.164×)

Callipepla 410 10.36 43.71 22.69 (3.366×)
Fraction of Peak

A100 XcgSolver SerpensCG Callipepla
0.616% 4.74% 5.06% 10.7%

Energy Efficiency – GFLOP/J
Min Max GeoMean

A100 1.108E-2 7.398E-1 1.215E-1 (0.883×)
XcgSolver 4.214E-2 3.966E-1 1.376E-1 (1.000×)
SerpensCG 6.358E-2 4.827E-1 1.825E-1 (1.326×)

Callipepla 1.851E-1 7.806E-1 4.052E-1 (2.945×)

and 15.72× geomean speedup compared with XcgSolver. For the 18
large-scale matrices, we notice that (1) XcgSolver failed on eight ma-
trices because memory allocation exceeds available memory space
while the other three accelerators/platforms support all the 18 large-
scale matrices, and (2) Callipepla achieved a higher speedup than
the speedup on Matrix M1 to M18 compared with XcgSolver, i.e.,
4.787× v.s. 3.241×. The superior speedup indicates that Callipepla
has better scalability and supports larger problem size than Xilinx’s
XcgSolver. The highest speedup Callipepla achieves is 11.11×.
However, A100 GPU performs better on Matrix M19 to M36 for the
following reason. The SpMV in CG is memory bound. The arith-
metic intensity of an FP64 SpMV is 0.125 FP/B (in comparison, the
arithmetic intensity of an FP64 dense 128-128 matrix-matrix multi-
plication is 10.7 FP/B). Thus, CG has low data reuse and demands
high memory bandwidth for high performance. GPUs are good
at high throughput processing. Thus, for smaller problems, it is
difficult to utilize all computing resources and especially off-chip
memory bandwidth for CG. So GPUs such as A100 which has a
extremely high memory bandwidth (1.56TB/s) perform better on
larger problems.

7.3 Computational & Energy Efficiency
Table 5 shows the throughput, fraction of peak (FoP), and energy
efficiency of the three FPGA accelerators and the A100 GPU. We
define throughput as (# floating-point operations) / (solver time),
energy efficiency as (throughput) / (power), and FoP as (maximum
throughput) / (peak throughput). For the A100 GPU, we sum up
the FP64 throughput of both Cuda cores and tensor cores from
the report [31] as the peak throughput, i.e., 26,200 GFLOP/s. To
estimate the peak throughput of the Xilinx U280, we synthesize
an 8-way parallel FP64 axpy module and use the reported DSP
number 88 to estimate the DSP FP64 efficiency as 5.5 DSP/FLOP.
Then we use the U280 DSP number 9,024 from [45] and a 250 MHz
target freqeuncy to estimate the U280 peak FP64 throughput as
9024/5.5 ∗ 0.250 = 410 GFLOP/s.
7.3.1 Throughput. Callipepla achieves 22.69 GFLOP/s which is
3.366× compared to Xilinx’s XcgSolver. For the lower bound, Cal-
lipepla achieves 10.36 GLOP/s, the highest among all four accel-
erators/platforms and is 3.85× compared to the A100 GPU. For
the maximum throughput, Callipepla achieves 43.71 GLOP/s,
higher than XcgSolver (19.43 GLOP/s) but lower than the A100
GPU (179.8 GLOP/s). Because of the stream based instructions and
decentralized vector scheduling, Callipepla is efficient in con-
trolling the processing modules. However, for GPU, the kernel

Table 6: FPGA resource utilization of XcgSolver, SerpensCG,
and Callipepla, all on the Xilinx U280 FPGA.

LUT FF DSP
XcgSolver 503K (38.6%) 878K (33.7%) 1196 (13.3%)
SerpensCG 399K (30.6%) 445K (17.1%) 1236 (13.7%)
Callipepla 509K (38.9%) 557K (21.4%) 1940 (21.5%)

BRAM URAM
XcgSolver 595 (29.5%) 128 (13.3%)
SerpensCG 460 (22.8%) 384 (40.0%)
Callipepla 716 (35.5%) 384 (40.0%)

launching control signal is issued from the host CPU, which leads
to the inefficiency of the GPU when processing small-size prob-
lems. So Callipepla achieves a higher minimum throughput than
the A100 GPU. The FoP of A100 GPU, XcgSolver, SerpensCG, and
Callipepla are 0.616%, 4.74%, 5.06%, and 10.7%, respectively. In
fact, the HPCG Benchmark [12] uses the conjugate gradient solver
to benchmark computer clusters’ performance. In the June 2022
Results of HPCG Benchmark, the FoP ranges from 0.2% – 5.6%. The
10.7% FoP achieved by Callipepla is significant.
7.3.2 Energy Efficiency. The A100 GPU, XcgSolver, SerpensCG,
and Callipepla achieve respectively 1.215E-1 GFLOP/J, 1.376E-1
GFLOP/J, 1.825E-1 GFLOP/J, and 4.052E-1 GFLOP/J in geomean
energy efficiency. Callipepla is 2.945× compared with Xilinx’s
XcgSolver and 3.335× compared with the A100 GPU. Callipepla
also achieves the highest minimum and maximum energy efficiency.
7.4 Resource Utilization
Table 6 compares the utilization of the FPGA resources including
LUT, FF, DSP, BRAM, and URAM of the three FPGA accelerators.
Compared with XcgSolver, Callipepla consumes almost the same
LUT (∼39%) and less FF (21.4% v.s. 33.7%). Callipepla consumes
more DSPs (1940 v.s. 1196) than XcgSolver, which indicates that
Callipepla has a higher computation capacity. Callipepla uses
more BRAMs (716 v.s. 595) and URAMs (384 v.s. 128). In the Cal-
lipepla accelerator, the SpMV requires 512 BRAMs and all URAMs,
the other 206 BRAMs are consumed by Xilinx’s add-on modules.
7.5 Iteration Number & Residual Trace
7.5.1 Iteration Number. Table 7 reports the iteration numbers of
the evaluated matrices on the CPU, Xilinx’s XcgSolver, Callipepla,
and NVIDIA A100. We use the CPU as a golden reference.

For most matrices, the iteration numbers of Callipepla and
the A100 are within a 10 iteration difference compared to the CPU.
However, XcgSolver shows significant iteration increases on many
matrices. For example, on Matrix M20 cfd2, XcgSolver takes 2,914
more iterations to reach convergence. XcgSolver pads zeros between
dependent elements in floating-point accumulation to resolve the
dependency issue. XcgSolver uses floating-point accumulation la-
tency as the dependency distance. However, the HLS may insert
extra latency when scheduling the processing pipeline. Therefore,
the true dependency distance may become larger than the floating-
point accumulation latency. So we observe the unstable numerical
behaviors of XcgSolver. On the contrary, the SpMV in Callipepla
is based on the Serpens [37] accelerator which uses the load-store
dependency length instead of the floating-point accumulation la-
tency. So the numerical accuracy of Callipepla is higher than
XcgSolver. Meanwhile, Serpens [37] uses an out-of-order scheme
for scheduling non-zeros, which can save memory and is reason
that XcgSolver exceeds available memory space and fails on eight
large-scale matrices while Callipepla supports the eight matrices.
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Table 7: Iteration numbers of the evaluated matrices and the difference compared to CPU.
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

CPU 20K 634 164 26 26 9,441 1,713 15,692 4,821 1,750 1,266 20K 12,956 20K 5,615 20K 9,904 11,816
XcgSolver 20K 770 256 39 39 10,902 2,018 20K 5,959 2,376 1,855 20K 15,044 20K 5,880 20K 11,128 13,262
Diff. to CPU 0 +136 +92 +13 +13 +1,461 +305 +4,308 +1,138 +626 +589 0 +2,088 0 +265 0 +1,224 +1,446

Callipepla 20K 635 164 26 26 9,491 1,705 20K 4,824 1,749 1,265 20K 13,109 20K 5,611 20K 9,903 11,823
Diff. to CPU 0 +1 0 0 0 +50 -8 +4,308 +3 -1 -1 0 +153 0 -4 0 -1 +7

A100 20K 633 164 26 26 9,246 1,716 1,5703 4,823 1,750 1,261 20K 12,420 20k 5,607 20K 9,909 11,811
Diff. to CPU 0 -1 0 0 0 -195 +3 +11 +2 0 -5 0 -536 0 -8 0 +5 -5

M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36
CPU 33 8,419 242 6,151 2,224 5,507 6,584 4,903 2,287 6,424 5,902 3,906 9,879 13,263 2,054 1,299 7,638 12,160

XcgSolver 47 11,333 348 7,708 FAIL 6,676 8,294 6,782 2,739 FAIL 9,477 4,583 FAIL FAIL FAIL FAIL FAIL FAIL
Diff. to CPU +14 +2,914 +106 +1,557 — +1,169 +1,710 +1,879 +452 — +3,575 +677 — — — — — —

Callipepla 33 8,458 242 6,150 2,222 5,525 6,584 4,916 2,285 6,424 6,040 3,893 9,829 13,259 2,053 1,314 7,656 12,163
Diff. to CPU 0 +39 0 -1 -2 +18 0 +13 -2 +0 +138 -13 -50 -4 -1 +15 +18 +3

A100 33 8,403 242 6,154 2,222 5,517 6,584 4,902 2,284 6,409 5,900 3,893 9,894 13,249 2,052 1,306 7,642 12,161
Diff. to CPU 0 -16 0 +3 -2 +10 0 -1 -3 -15 -2 -13 +15 -14 -2 +7 +4 +1
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Figure 9: Residual traces of three matrices nasa2910, gyro_k, and msc10848 with five precision settings: default FP64, Mix-
V1/V2/V3, and Callipepla on-board execution. Y-axis: solver residuals; X-axis: iteration number.

For Matrix M8 s3rmt3m3, both XcgSolver and Callipepla do
not converge but the CPU and the GPU do. Because the two FPGA
accelerators use DSPs to implement FP64 multiplication and ad-
dition, we suspect that there is a numerical difference to some
degree in the high-precision FP64 operation in the Xilinx HLS DSP
implementation.
7.5.2 Residual Trace. Figure 9 illustrates the residual traces of three
matrices nasa2910, gyro_k, and msc10848 with default FP64, Mix-
V1/V2/V3 precision settings and the residual traces fromCallipepla
on-board execution. From the residual trace of gyro_k we see that
Mix-V1 (where all values are in FP32, colored in red) and Mix-
V2 (where the SpMV input sparse matrix and input vector are in
FP32, colored in green) do not converge within 20K iterations. All
the three residual traces show the Mix-V3 (where only the SpMV
input sparse matrix are in FP32, colored in magenta) are closely
following the traces of the default CPU FP64 (colored in black).
Although Callipepla employs the Mix-V3 precision, there is a
small difference of the trace from Callipepla on-board execution
(colored in blue) and theMix-V3 trace. That is because the difference
in hardware implementations of the CPU FP64 processing and the
FPGA FP64 processing.

7.6 Bottleneck and Possible Improvement
In the design of Callipepla accelerator, we match the processing
rate with the HBM bandwidth as discussed in Section 4. Therefore,
the bottleneck of Callipepla is the HBM bandwidth. Exhibited
in Table 2 the bandwidth of the NVIDIA A100 GPU is 4.17× of
Callipepla (1.56 TB/s v.s. 374 GB/s). There are two HBM stacks
on a Xilinx U280 FPGA for a total bandwidth of 460 GB/s. If Xilinx
deploys 8 (4×) HBM stacks on a next generation HBM FPGA, we
are able to achieve 3.07× throughput advantage compared to an
A100 GPU. However, the current HBM controllers is area-hungry.

In our evaluation, the HBM controllers consume almost one SLR
and a U280 FPGA only has 3 SLRs. It is not practical to scale up 4×
bandwidth with the current HBM controllers because that will con-
sume 4 SLRs. We would like Xilinx to optimize the HBM controller
IP or deploy it as an ASIC unit.

8 CONCLUSION
In the design of FPGA JPCG accelerator we overcome three chal-
lenges – (1) the support an arbitrary problem and accelerator ter-
mination on the fly, (2) the coordination of long-vector data flow
among processing modules, and (3) saving off-chip memory band-
width and maintaining FP64 precision convergence. To resolve the
challenges, we present Callipepla, an CG accelerator on Xilinx
U280 HBM FPGAs with our innovative solutions – (1) a stream
centric instruction set, (2) vector streaming reuse and decentral-
ized vector scheduling, and (3) mixed FP32/FP64 precision SpMV.
The evaluation shows that compared to the Xilinx HPC product
XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher
throughput, and 2.94× better energy efficiency. We also achieve 77%
of the throughput with 3.34× higher energy efficiency compared
with an NVIDIA A100 GPU.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers of FPGA 2023 for their con-
structive comments and Jinming Zhuang for helping with the
artifact evaluation. This work is supported in part by the NSF
RTML Program (CCF-1937599), CDSC industrial partners (https:
//cdsc.ucla.edu/partners), the Xilinx XACC Program, and the AMD2

HACC Program.

2J. Cong has a finacial interest in AMD.

256

https://cdsc.ucla.edu/partners
https://cdsc.ucla.edu/partners


Callipepla: Stream Centric Instruction Set and Mixed Precision for Accelerating Conjugate Gradient Solver FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] Athanasios C Antoulas. 2005. Approximation of Large-Scale Dynamical Systems.

Vol. 6. SIAM.
[2] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne, and John

Wickerson. 2020. Combining Dynamic & Static Scheduling in High-level Syn-
thesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 288–298.

[3] Jianyi Cheng, Lana Josipović, George A Constantinides, Paolo Ienne, and John
Wickerson. 2021. DASS: Combining Dynamic & Static Scheduling in High-Level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 3 (2021), 628–641.

[4] Yuze Chi and Jason Cong. 2020. Exploiting Computation Reuse for Stencil
Accelerators. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[5] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with
Optimized Dataflow Architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[6] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong.
2021. Extending High-Level Synthesis for Task-Parallel Programs. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 204–213.

[7] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.
2021. HBM Connect: High-Performance HLS Interconnect for FPGA HBM. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
116–126.

[8] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen Zhang,
and Peipei Zhou. 2018. Best-Effort FPGA Programming: A Few Steps Can Go a
Long Way. arXiv preprint arXiv:1807.01340 (2018).

[9] Jason Cong, Muhuan Huang, and Peng Zhang. 2014. Combining Computation
and Communication Optimizations in System Synthesis for Streaming Applica-
tions. In Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays. 213–222.

[10] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1–8.

[11] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[12] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2015. HPCG Benchmark:
A New Metric for Ranking High Performance Computing Systems. Knoxville,
Tennessee 42 (2015). https://hpcg-benchmark.org/custom/index.html?lid=155&
slid=313

[13] Joel H Ferziger and Milovan Perić. 2002. Computational Methods for Fluid Dy-
namics. Vol. 3. Springer.

[14] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. 2014.
A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multipli-
cation. In 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 36–43.

[15] Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Vol. 105. SIAM.

[16] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti,
Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, et al. 2022. TAPA: A
Scalable Task-Parallel Dataflow Programming Framework for Modern FPGAs
with Co-Optimization of HLS and Physical Design. arXiv preprint arXiv:2209.02663
(2022).

[17] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 81–92.

[18] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru
Zhang, and Jason Cong. 2020. Analysis and Optimization of the Implicit Broad-
casts in FPGA HLS to Improve Maximum Frequency. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[19] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. 2019. Hard-
ware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A
Race Between FPGA and GPU. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 127–135.

[20] Rudi Helfenstein and Jonas Koko. 2012. Parallel Preconditioned Conjugate
Gradient Algorithm on GPU. J. Comput. Appl. Math. 236, 15 (2012), 3584–3590.

[21] Magnus R Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients
for Solving Linear Systems. J. Res. Nat. Bur. Standards 49, 6 (1952), 409.

[22] Nicholas J Higham and Théo Mary. 2022. Mixed Precision Algorithms in Numer-
ical Linear Algebra. Acta Numerica 31 (2022), 347–414.

[23] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Ac-
celerating Graph Linear Algebra on HBM-Equipped FPGAs. In 2021 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 1–9.

[24] David S Kershaw. 1978. The Incomplete Cholesky—Conjugate Gradient Method
for the Iterative Solution of Systems of Linear Equations. J. Comput. Phys. 26, 1
(1978), 43–65.

[25] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, et al.
2022. OverGen: Improving FPGA Usability through Domain-specific Overlay
Generation. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 35–56.

[26] Antonio Roldao Lopes and George A Constantinides. 2008. A High Throughput
FPGA-Based Floating Point Conjugate Gradient Implementation. In International
Workshop on Applied Reconfigurable Computing. Springer, 75–86.

[27] Oleg Maslennikow, Volodymyr Lepekha, and Anatoli Sergyienko. 2005. FPGA
Implementation of the Conjugate Gradient Method. In International Conference
on Parallel Processing and Applied Mathematics. Springer, 526–533.

[28] Aiichiro Nakano. 1997. Parallel Multilevel Preconditioned Conjugate-gradient
Approach to Variable-Charge Molecular Dynamics. Computer Physics Communi-
cations 104, 1-3 (1997), 59–69.

[29] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng.
2018. Hybrid Optimization/Heuristic Instruction Scheduling for Programmable
Accelerator Codesign. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques. 1–15.

[30] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 416–429.

[31] NVIDIA. 2021. NVIDIA A100 TENSOR CORE GPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-
update-nvidia-us-1521051-r2-web.pdf.

[32] Sahithi Rampalli, Natasha Sehgal, Ishita Bindlish, Tanya Tyagi, and Pawan Ku-
mar. 2018. Efficient FPGA Implementation of Conjugate Gradient Methods for
Laplacian System using HLS. arXiv preprint arXiv:1803.03797 (2018).

[33] Antonio Roldao-Lopes, Amir Shahzad, George A Constantinides, and Eric C
Kerrigan. 2009. More Flops or More Precision? Accuracy Parameterizable Linear
Equation Solvers for Model Predictive Control. In 2009 17th IEEE Symposium on
Field Programmable Custom Computing Machines. IEEE, 209–216.

[34] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics.

[35] Atefeh Sohrabizadeh, Jie Wang, and Jason Cong. 2020. End-to-End Optimization
of Deep Learning Applications. In Proceedings of the 2020 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. 133–139.

[36] Linghao Song, Fan Chen, Xuehai Qian, Hai Li, and Yiran Chen. 2020. Low-Cost
Floating-Point Processing in ReRAM for Scientific Computing. arXiv preprint
arXiv:2011.03190 (2020).

[37] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2022. Serpens: A High
Bandwidth Memory Based Accelerator for General-Purpose Sparse Matrix-Vector
Multiplication. In Proceedings of the 59th ACM/IEEE Design Automation Conference.
211–216.

[38] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and
Jason Cong. 2022. Sextans: A Streaming Accelerator for General-Purpose Sparse-
Matrix Dense-Matrix Multiplication. In Proceedings of the 2022 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. 65–77.

[39] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating Graph Processing Using ReRAM. In 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 531–543.

[40] Livermore Software Technology. 2022. LS-DYNA. https://www.lstc.com/
products/ls-dyna

[41] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Com-
piler for High-Performance Systolic Arrays on FPGA. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 93–104.

[42] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[43] Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. 2022. Unifying Spatial
Accelerator Compilation with Idiomatic and Modular Transformations. IEEE
Micro 42, 5 (2022), 59–69.

[44] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. 2020.
A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 703–716.

[45] Xilinx. 2022. Alveo U280 Data Center Accelerator Card Data Sheet. https:
//www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-
u280.pdf.

[46] Xilinx. 2022. Vitis HPC Library. https://xilinx.github.io/Vitis_Libraries/hpc/
2022.1/index.html

[47] Xilinx. 2022. Vitis Libraries. https://github.com/Xilinx/Vitis_Libraries
[48] Hanqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN training

on CPU-FPGA heterogeneous platforms. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 255–265.

257

https://hpcg-benchmark.org/custom/index.html?lid=155&slid=313
https://hpcg-benchmark.org/custom/index.html?lid=155&slid=313
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-update-nvidia-us-1521051-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-update-nvidia-us-1521051-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-update-nvidia-us-1521051-r2-web.pdf
https://www.lstc.com/products/ls-dyna
https://www.lstc.com/products/ls-dyna
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf
https://xilinx.github.io/Vitis_Libraries/hpc/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/hpc/2022.1/index.html
https://github.com/Xilinx/Vitis_Libraries


FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linghao Song et al.

[49] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 161–170.

[50] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating Binarized Convo-
lutional Neural Networks with Software-Programmable FPGAs. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 15–24.

258


	Abstract
	1 Introduction
	2 CG Solver Acceleration Challenges & Callipepla Solutions
	2.1 Conjugate Gradient Solver
	2.2 Prior CG Acceleration & Related Works
	2.3 Acceleration Challenges & Our Solutions

	3 Callipepla Architecture
	4 Stream Centric Instruction Set
	4.1 Three Instruction Types
	4.2 Processing Model
	4.3 The Global Controller Code

	5 Vector Streaming Reuse & Decentralized Vector Scheduling
	5.1 Vector Streaming Reuse
	5.2 Three Computation Phases
	5.3 Recomputing to Save Off-Chip Memory
	5.4 VSR and Memory Accessing
	5.5 Decentralized Vector Scheduling
	5.6 Avoiding Deadlock
	5.7 Double Channel Design

	6 Mixed-Precision SpMV
	7 Evaluation
	7.1 Evaluation Setup
	7.2 Solver Performance
	7.3 Computational & Energy Efficiency
	7.4 Resource Utilization
	7.5 Iteration Number & Residual Trace
	7.6 Bottleneck and Possible Improvement

	8 Conclusion
	References



