2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) | 979-8-3315-0281-2/25/$31.00 ©2025 IEEE | DOI: 10.1109/FCCM62733.2025.00062

2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

NoH: NoC Compilation in High-Level Synthesis

Huifeng Ke*, Sihao Liu*, Licheng Guof, Zifan He*,
Linghao Song*, Suhail Basalama*, Yuze Chif, Tony Nowatzki*, Jason Cong*,
*University of California, Los Angeles, TRapidStream Design Automation, Inc.,
jakeke@cs.ucla.edu,

Abstract—In FPGAs, high communication latency in multi-
die chips has driven the integration of hardened networks-on-
chip (NoCs) in commercial devices. However, for programming
FPGAs with high-level synthesis (HLS), existing tools only
provide low-level cumbersome abstractions, and only work for
offloading memory accesses. Furthermore, these abstractions
remain inaccessible to programmers due to their reliance on
placement knowledge. While automatically leveraging the NoC
without manual intervention is ideal, it poses several challenges:
1. Managing the trade-off in resource utilization between the hard
NoC and the Programmable Logic (PL). 2. Allocating limited
hard NoC resources between different communication in the
designs. 3. Aligning hard NoC and PL placement even though
the actual PL placement cannot be determined beforehand.

We address these challenges by developing NoH, the first HLS
flow that automates hard NoC offloading. First, we develop a
formal NoC-aware placement algorithm that leverages integer
linear programming (ILP) and considers the first two challenges
for offloading external memory accesses and latency-insensitive
communication between modules. Then, we arrange the ports
synergistically with PLL modules via a port-affinity model that
approximates the PL placement. Finally, NoH is integrated into
an end-to-end HLS flow and evaluated on 4 workloads with di-
verse communication patterns. NoH gains 20% FPGA frequency
over AMD tools by leveraging the hard NoC. Compared to
AutoBridge [1], a recent high-level physical synthesis technique
that optimizes frequency but does not consider the hard NoC,
NoH never fails place-and-route by offloading inter-die crossings
(AutoBridge fails in 31% of workload configurations tested) and
is faster (6%) for the rest.

I. INTRODUCTION

HLS is gaining prominence for enabling productive pro-
grammability for FPGA systems [2]. It has shown success
in many application domains, including deep learning [3]-
[9], video transcoding [10], graph processing [11]-[22], and
genome sequencing [23]-[29].

Despite these successes, communication on FPGAs is in-
creasingly burdensome. To help address the communication
bottleneck, major FPGA vendors such as AMD [30] (Fig-
ure 1), Intel [31], and Achronix [32], have introduced a
system-level hard network-on-chip (NoC). Hard NoCs increase
the bandwidth per wire due to higher frequency, facilitate
efficient time-multiplexing, and guarantee interconnect timing
closure.

However, it can be difficult to exploit the benefits of hard
NoC, especially for HLS users. Users would need knowledge
of coarse-grained placement at design time to exploit hard
NoC bandwidth and achieve high frequency at the same time.
If NoC port placement is not provided, the place and route
(P&R) tool may not be able to meet the NoC bandwidth

D mmérNecs)gPort Egr’ggsCPort
819.2 GB/s
W @ W W s
DIE 1

256 GB/s

i

DIE 0
Horizontal NoC 128 GB/s

DRAM

Fig. 1: A sketch of the hard NoC in the AMD Versal VHK158
FPGA board. A subset of NoC ports are shown.

Vertical NoC

constraints due to competing PL placement. That limitation
undermines the hardware abstraction HLS brings. In addition,
it is not trivial to decide what to offload on to the hard NoC.
In fact, commercial FPGA HLS compilers do not yet support
instantiating NoC within HLS designs, except for external
memory. Even then, the current P&R tool cannot optimize the
placement of programmable fabric cooperatively, encumbering
the potential resource savings and frequency gains of utilizing
the hard NoC.

An ideal approach is to automatically infer hard NoC usage,
based on communication patterns in the HLS program without
any programmer’s help. However, there are several challenges
that must be addressed. First, we must balance the use of
hard NoC and PL resources to achieve optimal performance.
Overusing the hard NoC can impact latency and throughput,
while relying too much on the PL resources left the hard NoC
wasted and could make P&R difficult. Second, we need to
trade-off using the limited hard NoC resources for different
communication in the design (i.e. for memory accesses versus
for communication between modules!. Third, the arrangement
of NoC ports needs to be synergistic with the PL placement,
otherwise congestion can occur near the hard NoC ports.
The key problem is that the actual PL placement cannot be

'In this paper, “module” refers exclusively to RTL modules.

2576-2621/25/$31.00 ©2025 IEEE 162
DOI 10.1109/FCCM62733.2025.00062
Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

determined before selecting which communication is offloaded
to the NoC, creating a cyclic dependence.

We address these challenges in our technique: NoH, the
first automated hard NoC compilation framework for FPGA
HLS. Furthermore, to the best of our knowledge, no prior HLS
or RTL technique can decide which communication channels
to offload to soft logic vs hard NoC and how. NoH can
be integrated into commercial HLS tools and does not need
modification to the input C++ HLS program, thus improving
frequency while preserving the high-level programming. NoH
consists of two main algorithms, both formulated in integer
linear programming (ILP): The first is a NoC-aware Coarse-
grained Placement algorithm, specifically prioritizing the
memory IOs for the hard NoC while balancing the PL inter-
die wire utilization. The second is a Hard-NoC Offload-
ing algorithm that determines both which latency-insensitive
communication to offload and how to arrange the NoC ports
synergistically with the PL placement. We resolve the cyclic
dependence by employing a port-affinity model that is a proxy
for how PL modules will be placed. These are integrated
as a multistage optimization algorithm to permit tractable
compilation.

We compare NoH against two strong baselines which do
not use the hard NoC: the AMD Versal tools, as well as
AutoBridge [1], the previous state-of-the-art high-level phys-
ical synthesis (HLPS) tool that optimizes design frequency. It
couples physical design with HLS scheduling and automati-
cally pipelines inter-die paths. Using 16 configurations of four
workloads that represent unique communication scenarios, our
evaluation demonstrates a 20% frequency improvement over
Versal Tools by eliminating problematic congestion and high-
delay inter-die routes. While AutoBridge can sometimes reach
similarly high frequencies, it often fails due to congestion
on die boundaries (31% of configurations). NoH significantly
reduces inter-die crossings, which enables consistent compila-
tion without failure and achieves >226 MHz on average.

Contributions:

1) A technique, NoH, for automatically utilizing hard NoC
in HLS designs to minimize inter-die crossings and
improve frequency.

An algorithm for cooperative P&R for the PL and hard
NoC leveraging integer linear programming (ILP).
Evaluation using commercial tools of four real-world
workloads with sixteen configurations to show the fre-
quency increase from employing the hard NoC.

2)

3)

II. BACKGROUND

Versal NoC: The Versal NoC [30] is a packetized network
with 128 bit width running at 1 GHz. Figure 1 depicts a
sketch of the hard NoC in VHK158. The raw throughput of
each unidirectional link is 16 GB/s. The Versal NoC adopts a
mesh-like topology, but with horizontal links positioned at the
top and bottom of each die. The Versal NoC provides unified
access to all hard and soft components on the device using
NoC ingress ports and egress ports. The NoC ingress ports
issue requests to the network from the PL, whereas the NoC

163

2x2 Slots

<> Memory 10

Hard NoC Route
[] congestion Window

00 0]
OO

~O

with Hard NoC

= Pl Wires

Logic Cells

Coarse-grained
Placement

Fig. 2: A toy example illustrating the improvement of using
hard NoC. It facilitates a better placement with half of the slot-
crossings. Hard NoC further offloads scarce inter-die wires,
balances utilization, and reduces congestion.

Default P&R

egress ports service requests from the network to the PL. The
PL can access the NoC ports with decoupled clock domains.
Versal NoC implements virtual channels, up to 8 per link. NoH
uses virtual channels to prevent deadlocks.

Hard NoC Integration: Using the hard NoC requires signif-
icant programmer effort. To explain, AMD Vivado software
provides two IPs to use the hard NoC, the AXI NOC IP for
the AXI memory-mapped protocol, and the AXIS NOC IP for
the AXI4-Stream protocol. Configuring the two IPs requires
the low-level Vivado IP Integrator (IPI) flow, which is not the
conventional tool for HLS users. Users need to specify the
NoC connectivity and bandwidth requirement. The Vivado’s
NoC compiler statically determines NoC routes. However,
users should provide the placement of NoC ports. Otherwise,
the NoC compiler could arbitrarily place the ports, but does
not guarantee meeting both bandwidth requirements and high
frequency. Our work, NoH, fills the gap by automatically
determining the communication to offload to the hard NoC
and optimizing the placement of NoC ports.

III. MOTIVATION & OVERVIEW

A. Motivational Example

Figure 2 uses a toy example to illustrate the benefits of
the hard NoC. The default P&R tool will place memory 10s
and modules near memory, resulting in high congestion and
underutilized resources. With the coarse-grained placement
technique from HLPS tools like AutoBridge, the minimum
resource utilization constraint enforces a more balanced place-
ment. The device is divided into a grid of conceptual slots.
Tasks are placed in slots while minimizing crossings between
slots. However, for large designs, there can be many slot
crossings between dice, which often become critical timing
paths. Moreover, when the design uses a lot of memory 1Os,
HLPS tools can still cause high congestion near the memory.

With the hard NoC, we can find a better placement with
fewer crossings by placing a memory 10 in a distant slot. In

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

HLS
Design

Compilation & NoC-aware
Pre-processing Placement

Hard NoC
Offloading

il |
Simulation i
& Bitstream ¢ Gen-glator
AMDZ R

Floorplan

NoC Config.

Fig. 3: Our approach to automatically utilize hard NoC in HLS
designs.

addition, we can use the remaining bandwidth to offload the
rest of the inter-die crossings.

B. Overview of NoH Framework

Shown in Figure 3, NoH has been integrated into a com-
mercial HLS flow. The input of NoH is task-parallel dataflow
programs described in TAPA [33], which are compiled to
RTL and preprocessed to obtain dataflow graphs. An HLS-
level task (function) is a user-defined grouping of operations
(RTL modules). We first run the NoC-aware coarse-placement
ILP. It places memory IOs in the hard NoC and tasks in
user-defined slot granularity, where inter-slot crossings are
minimized and then pipelined. We use the remaining hard NoC
bandwidth to selectively replace inter-die pipelines, while
considering how to place NoC ports synergistically with the
likely placement of PL modules. We prioritize memory 1Os
because they could have a larger impact on the global inter-die
crossings as illustrated in Section III-A. Alternatively, users
have the flexibility to allocate all hard NoC bandwidth for
inter-die crossings. The final output is a NoC-enhanced RTL,
a coarse-grained placement, and the hard NoC connectivity
and QoS configurations. Through NoH, all inter-die crossings
are either pipelined or offloaded to the hard NoC.

IV. NoH ILP FORMULATION

Representation: Both HLS programs and the hard NoC
are described in graphs. The dataflow graph (DFG) is a
directed graph, where nodes are tasks and edges inter-task
communication including memory I0s. The hard NoC graph
(HNG) describes the NoC topology, where edges are the NoC
links, and nodes include NoC ingress ports, egress ports, and
switches.

Algorithm Flow: Coarse-grained placement of DFG involving
HNG is a cooperative P&R process. We minimize cross-
ings between slots while ensuring the offloaded memory 10s
and the latency-insensitive communication fit within the hard
NoC'’s bandwidth. It is accomplished in two stages, NoC-aware
placement and Hard NoC Offloading.

o Stage 1. NoC-Aware Placement Here we assign DFG
nodes to slots, while memory IOs are mapped to the HNG
(assigned to NoC ingress ports). We overwrite the default
placement of memory IOs so that they can be distributed

164

across the device through the hard NoC, if that leads to
a significant reduction in crossings.

o Stage 2. Hard NoC Offloading Here we select some
of the latency-insensitive slot crossings that are inter-die
to be further offloaded to the HNG given enough NoC
bandwidth. We optimize their NoC ingress and egress
ports placement to be synergistic to PL placement.

In the following subsections, we first introduce the defini-
tions used by ILP equations. Next, we explain the hard NoC
P&R constraints shared by the two ILP stages, followed by
the details of each stage. Section IV-A and all equations can
be skipped unless readers want to understand the precise ILP
formulation.

A. DFG Definitions for ILP equations

o DF(Gedges: edges in DFG to be placed. Each edge, e,
has a source slot and a sink slot.

e NoCingress: all NoC ingress ports. NoCingress, are
the ingress ports in the source slot of e.

e NoCegress: all NoC egress ports. NoCegress, are the
egress ports in the sink slot of e.

o NoC'switches: all NoC switches.

e NoClinks: all NoC links.

B. Hard NoC P&R Constraints

Given the bandwidth, the source slot and the sink slot of
each DFG edge, we introduce the hard NoC P&R constraints
to ensure legal offloading by enforcing that each NoC ingress
or egress port handles at most one edge (as the Versal NoC
does not time-multiplex the NoC ports), and no link exceeds its
bandwidth capacity. We first define the following ILP variables
for each e € DFGedges:

e G p: (binary) e uses NoC ingress port, p, as its source.

e b p: (binary) e uses NoC egress port, p, as its sink.

o fei: (binary) e uses NoC link [for its forward traffic

o 7, (binary) e uses NoC link [for its return traffic

o n.: (binary) e is not mapped to the HNG.

Choosing NoC Ports: This constraint ensures each DFG edge
is mapped to exactly one NoC ingress port and one egress port
within the same slot, or it is not mapped. The summation of
all candidate port variables should equal to 1 if the edge is
mapped (meaning n, is 0).

Ve € DFGedges : Z Gep+ne=1, (1)
peENoCingress,

Z bc,p +ne =1, 2
pENoCegress.

NoC Ports Non-overlap: This constraint ensures each NoC
ingress and egress port supports at most one DFG edge.
This should be updated if the hard NoC ports support time-
multiplexing.

Z aep <1, Vpe€ NoCingress 3)
e€DFGedges

Z bep <1, Vpe NoCegress)
e€DFGedges

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

NoC Routing for Forward Traffic: Flow conservation en-
sures a legal NoC route for each edge’s forward traffic from
source to sink. Each selected ingress port has exactly one
outgoing flow (. succ ()) and no incoming flow (.pred ()),
and vice versa for egress ports. The intermediary links must
have a conserved flow.

Ve € DFGedges : (5)
Gep, Y., fer=0,p € NoCingress.,

Z fe,l =

lep.suce() lep.pred()
(6)
Z fc,l = bc7p7 Z fc,l = O,Vp € NOC@gT'eSSe7
lep.pred() lep.suce()
@)
Z fer — Z fei =0, Vpe NoCswitches.
lep.pred() lep.suce()

®

NoC Routing for Return Traffic: If the DFG edge is a
memory IO, it needs a route for the return traffic. We apply
the same constraints for forward traffic to r.; but swapping
NoCingress., and NoCegress,.

Prevent Deadlocks Using Virtual Channels: This constraint
ensures that the number of traffic channels on a link does
not exceed the number of virtual channels available, V' C.
We need to assign each edge’s traffic to a unique virtual
channel to conservatively prevent deadlocks [34] and head-
of-line blocking between different traffic channels.

D

e€e DFGedges

fei+7e; <VC, Vi€ NoClinks (9)

Bandwidth: This constraint guarantees that the aggregated
bandwidth mapped to each NoC link does not exceed its
capacity. For memory IOs, the forward traffic bandwidth (bw)
includes write data, write address, and read address, while the
return traffic bandwidth (bw,.) includes read data and write
responses. For latency-insensitive communication, the address
and return bandwidth are zero. The capacity of the NoC links
is defined by a constant C'. This constraint guarantees that the
user-specified bandwidths in the original design are met.

>

e€cDFGedges

Jeq -bws +rey-bw, < C,Vl € NoClinks.

(10)

C. NoC-aware Placement

This stage places DFG nodes in coarse-grained slots and
memory IOs in the hard NoC, while minimizing inter-die
crossings. Similar to previous HLPS tools [1], we use a multi-
stage ILP for placement, where we incrementally make finer-
grained decisions until we have reached the user-defined slot
granularity. At each step, we logically divide the FPGA device
in half, either horizontally or vertically. For example, we split
2 times to get 2x2 slots. We place each DFGop in one of

165

PL oC
ngress Port

S'“i-—II

i

919
m | m
%_\

1 O-a
o
Z
=g P Wires of 8
Hard NoC §
Route

Horizontal NoC) Slot

0 1 X
Fig. 4: NoC-Aware Placement ILP. DFG nodes are placed in
the 2x2 coarse-grained slots. Memory IOs are offloaded to the
hard NoC to reduce slot crossings and balance utilization of
both dice.

PL NoC
Ingress Port

PL NoC
Egress Port

—OF

DIE 1
DIE 0O b)
D
Z
=>PLWires OFf wg mom
Hard NoC g
Route

Horizontal NoC \ Slot

0 1 X
Fig. 5: Hard NoC Offloading ILP. Additional pairs of NoC
ports replace the inter-die PL wires. Timing constraints are
relaxed by isolating each slot.

the two new slots. The placement part of ILP is omitted for
brevity, and we explain our hard NoC extension.

Without considering the hard NoC, a trivial heuristic used
by prior works is to place I0s near memory. However, the hard
NoC allows distribution of memory IOs across the device to
reduce inter-die crossings and congestion near memory.

Figure 4 illustrates this intuition using an example DFG. We
split twice to place each task in one of the four slots. During
each split, a legal hard NoC mapping is determined. Due to
the PL resource constraint, two tasks are placed in the lower
slots. Thus, their memory inputs are also placed in the lower
slots to reduce slot crossings and congestion near HBM.
On-chip Resources Constraint: This constraint ensures the
area of all DFG nodes placed in each slot does not exceed the
capacity. We consider all types of on-chip resources (except
hard NoC)—LUTs, registers, BRAMs, URAMs, and DSPs.
Placing Memory I0s in Hard NoC: We use the constraints
in Section IV-B to map only memory IOs to the hard NoC.
We must map all memory IOs (i.e., constraining all n. to

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

0) because all external memory accesses go through the hard
NoC in Versal FPGAs.

Objective Function: Minimizes all crossings between slots.
e.width is the bit width of the DFG edge e. mahattan(e)
returns the Manhattan distance between the source and sink

slots.
>

Vee DFGedges
D. Hard NoC Offloading

After the NoC-aware Placement stage, this stage cuts down
the latency-insensitive inter-die crossings using the remaining
bandwidth in the hard NoC. It has three objectives to achieve
in the specified order (the result of the earlier objective is set
as a constraint for the next). The ILP will return the selected
inter-die DFG edges to offload to the hard NoC. The third
objective is called PL-NoC Cooperative Placement, detailed
in Section IV-E. Here, we present the first two objectives.

Figure 5 shows the changes after stage 1, where the two
inter-die wires in the lower slots are replaced with two pairs
of connected hard NoC ports. Lower utilization of inter-die
wires reduces the congestion near die boundaries.

Fixing Memory 10s Placement: We apply the constraints
from Section IV-B and fix them to the memory IO placement
derived from the previous stage, which means that the user-
defined memory bandwidth requirements are preserved during
further offloading.

Placing Inter-die Edges: We use the constraints in Sec-
tion IV-B to map inter-die crossings this time. We create ILP
variables only for the inter-die DFG edges. Due to limited
NoC bandwidth, only a subset will be selected.

First Objective: The most important objective is to minimize
inter-die crossings. levels(e) returns the number of slots from
the source to the sink of e.

D

e€DFGedges

Minimize e.width - manhattan(e)

(an

Minimize Ne * e.width x levels(e) (12)

Second Objective: The second objective is to minimize the
number of mapped hard NoC links. The hard NoC’s latency

increases with the number of NoC links it goes through. We
want to keep the latency overhead low.

> >

e€DFGedges le NoClinks

Minimize feq+Tey (13)

E. PL-NoC Cooperative Placement

After achieving the first two objectives, our formulation
produces a legal hard NoC P&R solution. However, the
NoC ports placement may be suboptimal relative to the PL
placement, potentially causing congestion near NoC ports.
Unfortunately, since PL placement is unknown at this stage,
but NoC ports placement must be fixed before PL placement,
it creates a cyclic dependence where direct optimization is not
feasible.

Instead, our approach is to use a proxy model based on
port affinity, where higher affinity indicates that ports should

166

Slot

PL NoC PL NoC .
y @ Ingress Port Egress Port ,™ PL Wires Hard NoC Route
| &—® 1@-® &
S |M S|M
>—]

B o s

0 0

ok Mo ov
0 1 0 1 Slot x

Fig. 6: PL-NoC Cooperative Placement. We use a proxy model

based on port affinity to align NoC ports with PL placement.
Note the PL wire from node 3 to 4 becomes shorter.

be adjacent because their consumers/producers are closely
related. We define the affinity using the minimum number of
DFG nodes between two DFG edges. A lower number of nodes
means that two edges are more related, and we should place
their NoC ports closer. For example, as shown in Figure 6,
directly connected nodes 3 and 4 have high affinity, so aligning
their NoC ports (node 4’s egress port and node 3’s ingress port)
yields an aligned PL placement and shorter wiring. We define
af finity(e0,el) to return the affinity between two edges.
Dividing the distances between NoC ports by their affinity
indicates the importance of placing them together.

To calculate the distance, it is essential to use the physical
locations of NoC ports, which are arranged in columns distinct
from the mesh-like NoC topology. We define two helper
functions to calculate the physical distance between NoC
ports: dist(e0, el) returns the Manhattan distance between the
NoC ports of two DFG edges (can be limited to pairs within
the same slot to keep the ILP tractable), and dist(e) measures
the Manhattan distance between an edge’s NoC ingress and
egress ports for inter-slot alignment. We minimize the total
distance with tunable weights, W3 and Ws.

Third Objective:

dist(e0,el)

D airs — T 4 N 1N 14
P Z af finity(e0, el) (14
(GO’CI)E(DFGzcdgcs)
Dsrc_sink = Z dlSt(E) (15)
e€DFGedges
Minimize Wi * Dpairs + Wa * Dgre_gink (16)

V. IMPLEMENTATION

NoH leverages TAPA [33], an efficient C++ front-end
API for compiling HLS designs and extract DFGs. ILP is
implemented with the Python PULP package and the Gurobi
solver. The total runtime on average is within 30 minutes.
Users of NoH must specify slot granularity, HNGs, and their
design’s memory IO configurations (including the designated
external memory bank, read bandwidth, and write bandwidth).
We run AutoBridge to pipeline the inter-die crossings. RTL is
transformed to expose the mapped inter-die connections as
top-level ports so they can be connected to the hard NoC in
the Vivado’s IPI flow.

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

g =y

(b) Jacobi3D (c) KNN

(a) MM

(d) SpMV
Fig. 7: Simplified workload topology, only capturing memory
10s and computation nodes.

We use Tool Command Language (Tcl) to create a uni-
fied block design capable of both simulation and bitstream
generation. Our Tcl script instantiates the embedded ARM
core acting as the host. The host generates the design’s clock
and reset, sends control signals to the design, and verifies the
results in external memory. For RTL simulation, we use the
AMD Vivado Simulator (xsim) and Versal CIPS Verification
IP. NoC RTL simulation is within &= 5% of hardware [35].

VI. METHODOLOGY

Workload Selection: In order to stress different kinds of
communication patterns over the hard NoC, we choose four
workloads with unique topologies, as illustrated in Figure 7:

1) Systolic-array matrix-multiply (MM) accelerator gener-
ated by AutoSA [36].

2) Jacobi3D stencil designs generated by SODA [37].
3) K-nearest neighbors (KNN) in CHIP-KNN [38].
4) Sparse matrix-vector multiplication (SpMV) accelerator
generated by Serpens [39].
TABLE I: Summary of Workloads
Workload | FPGA | Memory | # Dice | Most-used
MM [36] VPK180 DRAM 4 DSp
Jacobi3D [37] | VPKISO | DRAM 4 DSP
KNN [38] VHKI158 HBM 2 LUT
SpMV [39] VHKI158 HBM 2 BRAM

Tool Version | AMD Vivado 2024.1

Table I summarizes the platforms for each workload. We
use two types of FPGA boards to evaluate different sizes of
the hard NoC and two types of memories to vary the number
of memory 10s. For each workload, we create four designs
with increasing resource utilization. Table III summarizes the
resource utilization of all designs. All designs use at least 40%
of one or more types of PL resources. Inter-die crossings also
vary from about 6% to over 50%.

Experiment Methodology: To filter the effect of P&R noise,
we run five frequency targets—300, 280, 250, 230, and 200
MHz. The maximum frequency results, Fmax, is taken from
the five targets. We use Vivado 2024.1, with the default P&R
directives.

Baselines: We compare against two baselines: (1) AMD
Vivado, and (2) AutoBridge with coarse-grained placement
and pipelining (we use the same settings in NoH). We select
Vivado to compare in the commercial tool setting. We compare

167

TABLE II: Summary of Frequency and Cycle Count

. . NoH Results Over Vivado Over AutoBridge
Configrations
Fmax Sim. Fmax Cycle Fmax Cycle
Results Cycle Gain Oseorllll:ta d Gain OSeorlﬁrelta d

(MHz) Count (%) (%) (%) (%)

MM 18x16 182.0 12694 4.2 0.9 F* 0.43
MM 18x17 190.6 13164 36.6 0.3 F -0.2
MM 18x18 270.5 13742 68.6 0.8 F 0.38
MM 18x19 285.8 14671 85.6 1.5 F 0.62
J* 109 300.0 2118 19.3 5.7 2.1 4.1
J 115 300.0 2222 30.4 5.5 0.5 39
J 121 300.0 2327 8.3 53 1.8 3.8
J 124 286.3 2380 17.8 5.1 -4.0 3.7
KNN 27 253.0 11417 9.0 1.8 32 1.8
KNN 36 248.8 11654 16.3 0 1.7 1.0
KNN 45 226.6 11681 12.3 1.2 -5.9 -0.2
KNN 54 202.6 11743 0.4 29 F 1.7
SpMV 32 288.5 3354 7.5 -0.4 5.5 -0.1
SpMV 40 287.3 3458 12.1 1.5 6.4 1.4
SpMV 48 230.0 3606 -6.3 4.5 5.7 33
SpMV 56 197.6 3444 -12.0 0.8 46.6 1.6

*Note: J is Jacobi3D. F is failed P&R for all 300, 280, 250, 230 and 200 MHz.

with AutoBridge because NoH also improves frequency using
similar coarse-grained placement and pipelining. However,
both baselines use the hard NoC only for memory 1Os, placing
them near memory by default, and do not support automatic
NoC utilization for other communication. In contrast, NoH
extends coarse-grained placement with hard NoC support
and generates offloading configurations. Section VII compares
NoH with both baselines in terms of Fmax, simulation cycles,
and Super Long Line (SLL) utilization, AMD’s metric for
inter-die wire usage.

VII. EVALUATION

Table II summarizes the overall comparison between NoH
and our two baselines. Relative to Vivado, NoH improves
Fmax by 20%. Compared to AutoBridge—which failed to
route 5 out of 16 configurations, NoH achieves an average
Fmax of 226 MHz, with a 6% improvement on the successful
configurations. The average cycle count overhead is modest at
2.4% compared to Vivado and 1.7% compared to AutoBridge.

Each workload has been highly optimized for frequency, as
noted in their publications. When scaled for Versal FPGAs, the
Vivado baseline already averages 217 MHz Fmax, and using
five frequency targets helps mitigate noise in P&R results,
so any further Fmax improvement is worth noting. We also
show that these improvements stem from NoH’s techniques
for reducing inter-die crossings and congestion.

A. MM

The MM accelerator implements a systolic array. We vary
the array size to get up to 77% DSP. The three memory 10s
are connected to the same task and placed near the DRAM.
This allows NoH to use all NoC bandwidth for the Hard
NoC Offloading stage. Its third objective (PL-NoC Cooperative
Placement) is exemplified in MM, where a good PL placement

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

350 350 350 350

Vivado M AutoBridge BNoH Vivado M AutoBridge BNoH Vivado B AutoBridge M NoH Vivado B AutoBridge M NoH
300 3004 300 300
< 250 < 2501 =250 — 250
I I T T
= 200 = 200+ S 200 = 200
5 150 o 1504 %150 % 150
1S 1S IS e
% 100 - 100 Y 100 Y- 100
50 504 50 50
0 0- 0 0
18x16 18x17 18x18 18x19 109 115 121 124 27 36 45 54 32 40 48 56
Array Dimension Length # HBM Ports # HBM Ports
(a) MM (b) Jacobi3D (c) KNN (d) SpMV

Fig. 8: Frequency comparisons of 4 workloads and 16 total design configurations (max. 90% LUT, 97% DSP, and 71% BRAM).
A red cross means unroutable. NoH achieves an average of 226 MHz and about 20% frequency improvement over Vivado.

resembles a mesh. Without it, NoC ports could misalign,
lowering Fmax.

With hundreds of tasks, AutoBridge struggles to find an
optimal solution. It times out after 7 hours while the solver
still has over 80% gap, resulting in a placement with more
inter-die crossings than Vivado. Consequently, all AutoBridge
baselines failed to P&R.

Although NoH uses the same placement, it offloads substan-
tial inter-die crossings to the NoC, reducing the SLL utilization
by an average of 19.7% and 37.4% (11172 and 21156 wires)
compared to Vivado and AutoBridge, respectively. As seen
in Figure 8(a), this leads to a notable Fmax improvement—
85% over Vivado. NoH is able to enhance an otherwise failing ~ Fig. 9: Congestion comparison: (a, b) MM 18x19 and (c, d)
placement to achieve up to 285 MHz. 54-port KNN. Warmer colors show higher congestion; NoH

(b, d) achieves lower congestion than AutoBridge (a, b).

B. Jacobi3D

The Jacobi3D accelerator computes multiple iterations of
a 7-point 3-dimensional Jacobi computation. We vary the
number of iterations to get up to 97% DSP usage. The number
of inter-die crossings is small. However, it can demonstrate one D. SpMV
ideal use case of hard NoC, where there is enough bandwidth The Serpens SpMV accelerator has a more irregular topol-
to map all inter-die crossings (excluding scarce control wires). ogy. We vary the number of HBM ports to reach up to 71%
With close to zero crossing, the P&R tool has a very relaxed usage for both BRAM and URAM. SpMV has low inter-
timing constraint between dice. die crossings so Vivado can sometimes do better by finer

Both NoH and AutoBridge have better Fmax than Vivado placement granularity. Compared to AutoBridge, on the other
(Figure 8(b)). Even though the design has used almost all hand, NoH consistently reduces SLL utilization, by an average
DSP resources, we can still achieve 300 MHz. Our method o 20.9% or 11831 wires. We provide an average increase in
is slightly worse than AutoBridge for 124-length due to noise Fmax of 16.0%, and up to 46.6%. Consistent with the KNN
in P&R. Nevertheless, our NoH method consistently decreases results, NoH proves more effective for designs with more

the SLL utilization by an average of 68.6% from Vivado and memory IOs, enabling designers to scale up and fully utilize

out the logic. We consistently reduce inter-die crossings by an
average of 28% or 15866 wires compared to AutoBridge.

72.7% from AutoBridge (Table III). memory bandwidth.
C. KNN E. Cycle Count
The KNN accelerator is LUT-bound. We vary the number Although the hard NoC is fully buffered in each switch,

of HBM ports to get up to 89% LUT utilization. Figure 8(c) there is a drop in bandwidth and rise in latency over num-
reveals an average improve of 9.5% over Vivado. Vivado has ber of hops. Our ILP algorithm minimizes the effect by
the lowest SLL utilization, but it over-congests the device near ~ using constraints to reserve sufficient NoC bandwidth, virtual
the HBM, as seen in Section VII-F. Congestion occurs mainly channels to isolate independent communication, and the hop-
near HBM controllers due to a large number of memory IOs. length objective to optimize NoC routes. Table II confirms
NoH allocates all NoC bandwidth for memory IOs to spread that the Fmax improvement is not diminished by the overhead,

168

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Resource utilization for

all benchmark configurations.

MM Jacobi3D
size LUT(%) FF(%) BRAM(%) URAM(%) DSP(%) SLL(%) LUT(%) FF(%) BRAM(%) URAM(%) DSP(%) SLL(%)
VE A* N¥*I V. A N|V A NV A NIV A N[V A NV A N|V A N|V A NIV A NIV A N|(V A N
Configl*|11.1 12.4 12.5| 34 8.6 7.2(37.7 37.7 37.7| 0 0 0 |642 642 64.2]52.3 63.5 42.4((13.3 13.5 13.5(28.6 28.8 28.7|16.7 16.7 16.7| 0.6 0.6 0.6 |85.1 85.1 85.1|55 6.5 2.0
Config2 [11.7 12.8 12.7(3.7 8.0 6.7 [40.0 40.0 40.0(O 0 0 |682 682 68.2150.0 63.7 41.3[(14.0 14.2 14.2(30.1 30.4 30.3|17.6 17.6 17.6| 0.6 0.6 0.6 |90.0 90.0 90.0| 59 6.8 1.3
Config3 [12.3 13.7 13.8| 3.8 9.0 7.5 |41.6 41.6 41.6 0 0 0 (722722 722|558 71.6 44.4|14.7 15.0 14.9(30.1 32.0 31.9|18.5 18.5 185(0.6 0.6 0.6 [94.4 944 944|58 6.6 19
Configd [13.0 144 144 4.0 9.0 7.2 (43.6 43.6 43.6(0 0 0 |763 763 76.3|54.5 74.2 42.4|[15.1 15.3 15.332.5 32.7 32.7|19.0 19.0 19.0| 0.6 0.6 0.6 |96.8 96.8 94.8| 58 6.6 2.0
KNN SpMV
size LUT(%) FF(%) BRAM(%) URAM(%) DSP(%) SLL(%) LUT(%) FF(%) BRAM(%) URAM(%) DSP(%) SLL(%)
V A N[V A N|V A N|V A N vV A N \% N VvV A N vV A N vV A N vV A N[V A N vV A N
Configl [43.2 42.3 44.0|121.0 22.0 21.8| 34 34 34 [16.6 16.6 16.6|58 58 58 |4.1 88 6.0 (123 124 123| 6.7 8.7 83 [40.3 40.3 40.3(39.4 394 394|79 79 79| 0 155 103
Config2 [58.1 58.5 58.4(28.0 29.6 29.2(45.3 45.3 45.3(22.1 22.1 22.1| 7.8 7.8 7.8 129 13.7 9.7 ||152 159 15.7(17.8 11.1 10.8[50.4 50.4 50.4(49.2 49.2 49.2|14.3 14.3 143| 8.8 20.0 14.2
Config3 [70.0 74.0 73.2(35.0 37.0 36.6(56.7 56.7 56.7(27.7 27.7 27.7| 9.7 9.7 9.7 |17.4 18.0 13.6/[17.8 18.6 18.1(10.2 12.7 12.4[60.5 60.5 60.5(59.0 59.0 59.0(17.1 17.1 17.1|15.4 21.9 16.7
Configd [89.1 90.2 87.1|42.0 44.4 44.0|68.0 68.0 69.0(33.2 33.2 33.2|11.7 11.7 11.7] 9.9 22.6 16.7(/21.0 22.7 21.1|11.9 15.7 14.3(70.5 70.5 70.5|68.9 68.9 68.9|19.6 19.6 19.6|17.8 22.9 23.4

*Note: V is Vivado baseline. A is AutoBridge baseline. N is NoH. Config 1 to 4 are in the same order as in Table II for each benchmark.

with less than 2.3% cycle count overhead compared to both
baselines.

F. Congestion Case Study

As shown in the routed device in Figure 9, NoH significantly
reduces congestion across all four dies. For MM 18x19, NoH
(a) offloads 19,253 inter-die wires, enabling a successful P&R
at 286 MHz, while AutoBridge (b) fails. Similarly, for KNN
with 54 HBM ports, NoH (c) achieves a balanced placement
with fewer wire-detours and inter-die crossings, reaching 203
MHz, whereas AutoBridge (d) again fails to complete P&R.

VIII. DISCUSSION

Scope of HLS Designs: NoH offloads point-to-point, latency-
insensitive communication, perfect for task-parallel designs
described in TAPA [33] as they provide native abstrac-
tions. This approach could be extended to support all-to-all
and memory-mapped communications, which are much more
costly to implement in PL, but incur no additional cost on the
hard NoC. For example, the improvement will be even more
notable to offload a soft crossbar.

Applicability to RTL Designs: Our ILP algorithms can
operate on RTL-level DFGs provided that latency-insensitive
communication is properly annotated. In fact, our current DFG
representation is not HLS-specific. Grouping RTL modules
into tasks is also important to facilitate manageable ILP
runtime.

Other Hard NoC Architecture: Although we tested on
the Versal NoC, NoH can be extended to other hard NoC
architectures. The P&R constraints for NoC ports, virtual
channels, and bandwidth in Section IV-B should be adjusted.

IX. RELATED WORK

FPGA Hard NoC Design and Use: There has been a variety
of works exploring FPGA hard NoC micro-architectures and
routing [40]-[42]. Several prior works have demonstrated the
usefulness of hard NoCs in the context of specific accel-
erator designs, like Transformers [43], graph convolutional
networks [44], and a customizable overlay [45] to reduce
compilation time.

169

Leverage Hard NoCs in Designs: Early works [46], [47]
show how FPGA designs can use a hard NoC to save resources
and improve frequency before hard NoCs are commercially
available. Their works promote hardening NoCs through a
handful of case studies, while NoH is the first technique to
automatically determine how best to convert designs to use
the hard NoC—which latency-insensitive channels to offload
and how to offload them. Moreover, we evaluate a variety of
real-world designs on multi-die platforms. [48], [49] optimize
the computer-aided design (CAD) flow in the open-source
VPR framework [50] to support hard NoC, making VPR a
viable alternative to commercial tools like Vivado. Future work
could integrate NoH into VPR to assess its effectiveness across
various NoC architecture and CAD flows.

High-level Physical Synthesis: HLPS works [1], [51]-[54]
propose FPGA physical-design techniques to optimize fre-
quency. NoH can be seen as an extension to HLPS tools,
like [1], to first consider the hard NoC. HRFF [55] proposes a
placement algorithm tailored for a custom NoC-based FPGA
architecture using simulators, but it does not provide a gener-
alization of their optimization techniques to other hard-NoC
FPGA:s.

X. CONCLUSIONS

NoH is the first HLS flow that can automatically offload
communication to a hard NoC. It formally reasons about
resource trade-offs, and enables offloading both memory ac-
cess and latency-insensitive communication. Our framework
cooperatively places PL modules while considering hard NoC
communication, using direct modeling for memory 1O place-
ment, and a proxy model for placing NoC ports. Our evaluation
demonstrates around 20% improvement in frequency over
AMD tools by automating hard NoC usage in HLS designs.

XI. ACKNOWLEDGMENTS

This work is partially supported by the NSF grant CCF-
2200831, the AMD HACC Program, the CDSC industrial
partners (https://cdsc.ucla.edu/partners/), and PRISM, one of
the seven centers in the JUMP 2.0 program sponsored by SRC
and DARPA.

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

[1]

[4]

[5]

(15]

[16]

REFERENCES

L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang,
and J. Cong, “Autobridge: Coupling coarse-grained floorplanning and
pipelining for high-frequency hls design on multi-die fpgas,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 81-92. [Online]. Available:
https://doi.org/10.1145/3431920.3439289

J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and
Z. Zhang, “Fpga hls today: Successes, challenges, and opportunities,”
ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, Aug. 2022.
[Online]. Available: https://doi.org/10.1145/3530775

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 161-170.
[Online]. Available: https://doi.org/10.1145/2684746.2689060

R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the
2017 ACM/SIGDA international symposium on field-programmable gate
arrays, 2017, pp. 15-24.

Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott,
L. Lavagno, K. Vissers, J. Wawrzynek et al,, “Synetgy: Algorithm-
hardware co-design for convnet accelerators on embedded fpgas,” in
Proceedings of the 2019 ACM/SIGDA international symposium on field-
programmable gate arrays, 2019, pp. 23-32.

C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “Fpga/dnn co-design: An efficient design methodology for
iot intelligence on the edge,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1-6.

Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang, “Fracbnn:
Accurate and fpga-efficient binary neural networks with fractional acti-
vations,” in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2021, pp. 171-182.

M. Blott, T. B. PreuBer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, pp. 1-23, 2018.

A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of
deep learning networks for learning and classification: A review,” ieee
Access, vol. 7, pp. 7823-7859, 2018.

X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen,
“High level synthesis of complex applications: An h. 264 video decoder,”
in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2016, pp. 224-233.

X. Chen, H. Tan, Y. Chen, B. He, W.-F. Wong, and D. Chen, “Thun-
dergp: Hls-based graph processing framework on fpgas,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 69-80.

G. Dai, Y. Chi, Y. Wang, and H. Yang, “Fpgp: Graph processing frame-

work on fpga a case study of breadth-first search,” in Proceedings of

the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2016, pp. 105-110.

J. Zhang and J. Li, “Degree-aware hybrid graph traversal on fpga-
hme platform,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2018, pp. 229-238.
S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing memory per-
formance for fpga implementation of pagerank,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig).
IEEE, 2015, pp. 1-6.

A. Parravicini, F. Sgherzi, and M. D. Santambrogio, “A reduced-
precision streaming spmv architecture for personalized pagerank on
fpga,” in Proceedings of the 26th Asia and South Pacific Design
Automation Conference, 2021, pp. 378-383.

S. Zhou, C. Chelmis, and V. K. Prasanna, “Accelerating large-scale
single-source shortest path on fpga,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. 1EEE, 2015, pp.
129-136.

170

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Chi, L. Guo, and J. Cong, “Accelerating sssp for power-law graphs,”
in Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2022, pp. 190-200.

J. Zhang and J. Li, “Eniad: A reconfigurable near-data processing
architecture for web-scale ai-enriched big data service,” in 202/ IEEE
Hot Chips 33 Symposium (HCS). 1EEE, 2021, pp. 1-8.

E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C.
Hoe, J. F. Martinez, and C. Guestrin, “Graphgen: An fpga framework
for vertex-centric graph computation,” in 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines. 1EEE, 2014, pp. 25-28.

T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for
graph analytics acceleration,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 111-117.

S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“Hitgraph: High-throughput graph processing framework on fpga,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp.
2249-2264, 2019.

Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph
linear algebra on hbm-equipped fpgas,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). 1EEE, 2021, pp. 1-9.
Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines. 1EEE, 2015, pp. 199-202.

L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2019, pp. 127-135.

M. Lo, Z. Fang, J. Wang, P. Zhou, M.-C. F. Chang, and J. Cong,
“Algorithm-hardware co-design for bgsr acceleration in genome analysis
toolkit,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 1EEE, 2020,
pp. 157-166.

C. Rauer and N. Finamore, “Accelerating genomics research with opencl
and fpgas,” Altera, Now Part of Intel, Tech. Rep, 2016.

P. Meng, M. Jacobsen, M. Kimura, V. Dergachev, T. Anantharaman,
M. Requa, and R. Kastner, “Hardware accelerated novel optical de
novo assembly for large-scale genomes,” in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2014, pp. 1-8.

L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanovi¢ et al., “Fpga accelerated indel
realignment in the cloud,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2019, pp.
277-290.

J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “Cpu-fpga co-
optimization for big data applications: A case study of in-memory
samtool sorting,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 291-291.
I. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel,
“Network-on-chip programmable platform in versal ™ acap architecture,”
in Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 212-221.
[Online]. Available: https://doi.org/10.1145/3289602.3293908

B. Esposito, “Intel agilex® 9 direct rf-series fpgas with integrated 64
gsps data converters,” in 2023 IEEE Hot Chips 35 Symposium (HCS).
IEEE Computer Society, 2023, pp. 1-35.

A. Cairncross, B. Henry, C. Chalmers, D. Reid, J. Shipton, J. Fowler,
L. Corrigan, and M. Ashby, “Ai benchmarking on achronix speedster®
7t fpgas,” White Paper, 2023.

L. Guo, Y. Chi, J. Lau, L. Song, X. Tian, M. Khatti, W. Qiao,
J. Wang, E. Ustun, Z. Fang, Z. Zhang, and J. Cong, “Tapa: A
scalable task-parallel dataflow programming framework for modern
fpgas with co-optimization of hls and physical design,” ACM Trans.
Reconfigurable Technol. Syst., vol. 16, no. 4, Dec. 2023. [Online].
Available: https://doi.org/10.1145/3609335

Dally and Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Transactions on Computers, vol. C-
36, no. 5, pp. 547-553, 1987.

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

AMD, Versal ACAP Design Guidance: NoC Simulation, Advanced
Micro Devices, Inc., 2024, accessed: 2024-10-17. [Online].
Available: https://docs.amd.com/r/en-US/ug1273-versal-acap-design/
NoC-Simulation

J. Wang, L. Guo, and J. Cong, “Autosa: A polyhedral compiler for
high-performance systolic arrays on fpga,” in Proceedings of the 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021.

Y. Chi, J. Cong, P. Wei, and P. Zhou, “Soda: Stencil with optimized
dataflow architecture,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE Press, 2018, p. 1-8. [Online].
Available: https://doi.org/10.1145/3240765.3240850

A. Lu, Z. Fang, N. Farahpour, and L. Shannon, “Chip-knn: A config-
urable and high-performance k-nearest neighbors accelerator on cloud
fpgas,” in 2020 International Conference on Field-Programmable Tech-
nology (ICFPT), 2020, pp. 139-147.

L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth
memory based accelerator for general-purpose sparse matrix-vector mul-
tiplication,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 211-216.

D. U. Becker, “Efficient microarchitecture for network-on-chip routers,”
Ph.D. dissertation, Stanford University, 2012.

L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70-78, 2002.

T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, p. 1-es, Jun.
2006. [Online]. Available: https://doi.org/10.1145/1132952.1132953

W. Zhang, Y. Liu, and Z. Bao, “Cat: Customized transformer accelerator
framework on versal acap,” arXiv preprint arXiv:2409.09689, 2024.

C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Li, and D. Tao,
“H-gen: A graph convolutional network accelerator on versal acap archi-
tecture,” in 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL), 2022, pp. 200-208.

T. Nguyen, Z. Blair, S. Neuendorffer, and J. Wawrzynek, “Spades: A
productive design flow for versal programmable logic,” in 2023 33rd In-
ternational Conference on Field-Programmable Logic and Applications
(FPL), 2023, pp. 65-71.

M. S. Abdelfattah, A. Bitar, and V. Betz, “Take the highway:
Design for embedded nocs on fpgas,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 98-107. [Online]. Available:
https://doi.org/10.1145/2684746.2689074

M. S. Abdelfattah and V. Betz, “Lynx: Cad for fpga-based networks-on-
chip,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), 2016, pp. 1-10.

S. Srinivasan, A. Boutros, F. Mahmoudi, and V. Betz, “Placement
optimization for noc-enhanced fpgas,” in 2023 IEEE 3Ist Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2023, pp. 41-51.

S. G. Shahrouz and V. Betz, “The road less traveled: Congestion-aware
noc placement and packet routing for fpgas,” in 2024 34th International
Conference on Field-Programmable Logic and Applications (FPL),
2024, pp. 33-42.

V. Betz and J. Rose, “Vpr: A new packing, placement and routing tool
for fpga research,” in International Workshop on Field Programmable
Logic and Applications. Springer, 1997, pp. 213-222.

J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and
synthesis for on-chip multicycle communication,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 23,
no. 4, pp. 550-564, 2004.

M. Xu and E J. Kurdahi, “Layout-driven rtl binding techniques for high-
level synthesis using accurate estimators,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 2, no. 4, pp. 312-343,
1997.

T. Alonso, L. Petrica, M. Ruiz, J. Petri-Koenig, Y. Umuroglu, I. Stame-
los, E. Koromilas, M. Blott, and K. Vissers, “Elastic-df: Scaling perfor-
mance of dnn inference in fpga clouds through automatic partitioning,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 2, pp. 1-34, 2021.

L. Du, T. Liang, S. Sinha, Z. Xie, and W. Zhang, “Fado: F loorplan-
a ware d irective o ptimization for high-level synthesis designs on
multi-die fpgas,” in Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2023, pp. 15-25.

171

[55] J. Luo, X. Liu, F. Chen, and Y. Ha, “Hrff: Hierarchical and recursive

floorplanning framework for noc-based scalable multidie fpgas,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 11,
pp. 4295-4308, 2023.

Authorized licensed use limited to: UCLA Library. Downloaded on October 30,2025 at 00:04:15 UTC from IEEE Xplore. Restrictions apply.

