
TAPA-CS: Enabling Scalable Accelerator Design on
Distributed HBM-FPGAs

Neha Prakriya
nehaprakriya@cs.ucla.edu

UCLA
Los Angeles, USA

Yuze Chi
chiyuze@cs.ucla.edu

UCLA
Los Angeles, USA

Suhail Basalama
basalama@cs.ucla.edu

UCLA
Los Angeles, USA

Linghao Song
linghaosong@cs.ucla.edu

UCLA
Los Angeles, USA

Jason Cong
cong@cs.ucla.edu

UCLA
Los Angeles, USA

Abstract
Despite the increasing adoption of FPGAs in compute clouds,
there remains a significant gap in programming tools and
abstractions which can leverage network-connected, cloud-
scale, multi-die FPGAs to generate accelerators with high
frequency and throughput. We propose TAPA-CS, a task-
parallel dataflow programming framework which automat-
ically partitions and compiles a large design across a clus-
ter of FPGAs while achieving high frequency and through-
put. TAPA-CS has three main contributions. First, it is an
open-source framework which allows users to leverage virtu-
ally "unlimited" accelerator fabric, high-bandwidth memory
(HBM), and on-chip memory. Second, given as input a large
design, TAPA-CS automatically partitions the design to map
to multiple FPGAs, while ensuring congestion control, re-
source balancing, and overlapping of communication and
computation. Third, TAPA-CS couples coarse-grained floor-
planning with interconnect pipelining at the inter- and intra-
FPGA levels to ensure high frequency. FPGAs in our multi-
FPGA testbed communicate through a high-speed 100Gbps
Ethernet infrastructure. We have evaluated the performance
of TAPA-CS on designs, including systolic-array based CNNs,
graph processing workloads such as page rank, stencil appli-
cations, and KNN. On average, the 2-, 3-, and 4-FPGA designs
are 2.1×, 3.2×, and 4.4× faster than the single FPGA base-
lines generated through Vitis HLS. TAPA-CS also achieves a
frequency improvement between 11%-116% compared with
Vitis HLS.

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651347

ACM Reference Format:
Neha Prakriya, Yuze Chi, Suhail Basalama, Linghao Song, and Jason
Cong. 2024. TAPA-CS: Enabling Scalable Accelerator Design on
Distributed HBM-FPGAs. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3620666.3651347

1 Introduction
In the big data era, there has been an exponential rise in
the demand for scalable, cheap, and high performance ac-
celeration. FPGAs have emerged as a promising solution to
counter the breakdown of Dennard’s scaling [22, 33] due to
their reconfigurability and low power consumption. One of
the greatest successful demonstrations is Microsoft’s Cat-
apult project which sped up the Bing Search engine using
Stratix V FPGAs, achieving a 95% increase in throughput
with a minimal power consumption increase of only 10%
[51]. Microsoft also displayed the use of FPGAs for acceler-
ating DNN inference and data compression in their servers
[25, 30, 35, 36, 48]. Today, other major players such as Ama-
zon [4, 5], Alibaba [1], Baidu [7], and Huawei [11] also use
FPGAs, and offer them as a service in their cloud.
High-level synthesis (HLS) tools like Vitis HLS [15] and

Intel HLS [12] raise the abstraction level for programming
individual FPGAs in the cloud from RTL to C++/OpenCL.
This allows the programmer to have little to no knowledge
of the underlying hardware and cycle accuracy. While these
tools deliver great results, they are limited to programming
a single FPGA. At the same time, with the gradual end of
Moore’s law, accelerator designs are becoming larger than
ever before, and require more programmable logic and mem-
ory than that available on a single FPGA device [47]. Our
goal is to support the network-connected devices shown in
Figure 1. Utilizing such multi-FPGA setups requires careful
consideration for efficient workload distribution to ammor-
tize the cost of inter-FPGA communication.
The design of modern FPGAs adds a new layer of com-

plexity. FPGA architectures have varying interconnection

966

https://doi.org/10.1145/3620666.3651347
https://doi.org/10.1145/3620666.3651347
https://doi.org/10.1145/3620666.3651347
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651347&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

Method HLS Ethernet Floorplanning Interconnect Topology- Automatic Hardware Generalizable Fmax (MHz)
Pipelining Aware Partitioning Execution

FPGA’12[34] × × × × × × × ✓ 85
Simulation-based [42, 44, 55] × × × × × ✓ × ✓ -

Virtualization-based [28, 61–63] ✓ ✓ × × × ✓ ✓ ✓ 100-300
CNN/DNN [17, 19, 20, 41, 57, 64, 65] ✓ ✓ × × × ✓ ✓ × 240

TAPA-CS (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 300
Table 1. Comparison of TAPA-CS and existing methods providing scale-out acceleration across multiple FPGAs.

HBM HBM

HBM

HBM

NICNIC

RACK RACK

SITE

D
R
A
M

HBMD
R
A
M

HBMD
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

NIC

U55C

U55C

U55C

U280

U280

U280

U250

U250

U250
HBM

HBMD
R
A
M

D
R
A
M

U55C

U280

U250

NIC

Figure 1. Network-Connected FPGAs

support (PCIe and Ethernet-based ports), different types of
memory bandwidth and capacity (on-chip BRAM, off-chip
DRAM/HBM), programmable logic units organized into mul-
tiple dies (i.e., chiplets), and degrees of data transfer cost
(on-die, cross-die, cross-chip). Consider the example of the
Xilinx/AMD Alveo U55C cards, organized as three chiplets.
This card supports 2 ports offering 100Gbps bandwidth for
networking. It also features an HBM with 16GB capacity
exposing a bandwidth of 460GBps. The on-chip memory pro-
vides a high bandwidth of 35TBps but has a small capacity of
43MB [2]. We introduce details of modern FPGA architecture
in Section 2.
An expert designer will consider all these factors when

designing and partitioning their kernel code across chips.
However, manual workload partitioning is inefficient as the
design gets larger. Therefore, despite the advances in CAD
tools which allow the user to program a single FPGA in the
cloud, there is a significant lack of programming tools which
can targetmultiple FPGAs potentially at the cloud scale. Such
a framework should take as input large workloads from the
user and automatically partition it across multiple devices
efficiently. We identify the following three main challenges
to address when developing such frameworks for cloud-scale
FPGAs:

1. Need a lightweight inter-FPGA communication infras-
tructure which enables reliable and high speed data
transfers.

2. Need to partition and map application code efficiently
keeping in mind factors like compute-load balancing,

network topology, the varying cost of on- and off-chip
communication.

3. Need to ensure high design frequency.

Several prior works have attempted to leverage the net-
working capabilities available in modern FPGAs [3, 32, 39,
40, 52, 53, 56]. These prior works differ in the achievable data
transfer throughput (10-90GBps), orchestration of data trans-
fers (host/FPGA), and the resource overheads. We compare
these methods in detail in Section 6.

We compare initial efforts in addressing Challenges 2 and
3 in Table 1. Simulation-based tools [42, 44, 55] enable rapid
prototyping but are not substitutes for real hardware execu-
tion. Prior work such as [17, 19, 20, 41, 57, 64, 65] proposed
CNN/DNN partitioning across FPGAs, but are not gener-
alizable to different workloads. Other works such as [34]
leverage latency-insensitivity (discussed in Section 4.3) to
partition the design across FPGAs but expect the user to
provide module-to-FPGA mappings in RTL, and perform
simulation-based experiments. Recent virtualization-based
work [61–63] also leverages latency-insensitive design to
partition the workload, but virtualizes the FPGA by creat-
ing pre-placed and pre-routed static regions to which user
logic is mapped. Most prior works take advantage of the
networking capabilities available in modern FPGAs, but do
not formulate their design partitioners in a way that min-
imizes and hides this latency. We find that none of these
prior works consider coupling intelligent floorplanning of
the compute modules and interconnect pipelining with HLS
compilation. This step is crucial in achieving designs with
high frequency as we discuss in Section 2. Also, none of the
prior works consider the topology of the networked-FPGA
infrastructure. This might result in the suboptimal mapping
of compute modules to devices, and is a major hurdle in the
scalability of the tool beyond two FPGAs. We discuss more
details of prior works in Section 6.
To this end, we propose TAPA-CS which takes as input

any large-scale dataflow workload expressed in C/C++, and
automatically partitions and maps it to a cluster of modern
FPGAs during HLS compilation. TAPA-CS couples the pro-
cess of intra- and inter-FPGA floorplanning with intercon-
nect pipelining to ensure high frequency. TAPA-CS is built
upon the latest progress in dataflow-based FPGA HLS design
tools [26, 37, 38]. Our main contributions are as follows:

967

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Static regions

Q
SF

P2
8

Vi
tis

 P
la

tfo
rm

 IP
s

HBM

Static regions

D
D

R

D
D

R
Q

SFP28

Vitis
Platform

IPs

PCIe

DDR

Alveo U55C Alveo U250 Intel Stratix 10

Figure 2. Architecture examples of modern FPGAs.

1. Integrate two layers of floorplanning (inter- and intra-
FPGA) and interconnect pipelining with HLS compila-
tion using an Integer Linear Programming (ILP)-based
resource allocator which takes into account network
topology and the internal FPGA chip layout.

2. Utilize the latency-insensitive nature of the dataflow
design to partition it across devices, allowing us flexi-
bility in implementing the inter-FPGA communication.

3. Raise the abstraction level of programming cloud-scale
FPGAs by hiding the cluster complexity.

4. Test TAPA-CS on different applications ranging from
systolic-array based CNNs, stencil designs, Page Rank,
and KNNon 2-8 FPGAs.We achieve an average through-
put increase of 2.1×, 3.2×, and 4.4× using 2, 3, and 4
FPGAs.We also improve the design frequency between
11-116% compared with Vitis HLS.

5. Discuss the computation to communication trade-offs
of each benchmark and how they impact the scalability
to multiple nodes containing up to 8 FPGAs.

2 Background
FPGAs consist of programmable logic organized in the form
of a 2-D grid. This programmable region consists of look-up
tables (LUTs) which can implement the truth table for any
6-input function. In recent years, FPGAs have also come
to include several hard IPs such as PCIe IPs, DDR/HBM
controllers, and other platform-specific IPs between the pro-
grammable logic regions. They have a fixed location on-
board and consume a significant amount of logic around
them. AMD/Xilinx UltraScale+ FPGAs [6] are also organized
into multiple dies separated by silicon interposers. Crossing
these die boundaries results in a much higher delay than on-
die interconnect. Similar trends are also observed in case of
Intel FPGAs [13]. Both AMD and Intel FPGA boards expose
physical interfaces in the form of PCIe ports and networking
interfaces in the form of Ethernet-compatible QSFP28 ports.
Figure 2 describes the chip layout of the Alveo U55C, U250
cards and the Intel Stratix 10 cards.

C/C++ HLS design
(untimed)

Scheduling & Binding

Synthesis, Implementation

HLS

Placement and Routing

Bitstream

RTL

C/C++ HLS dataflow
design

Scheduling & Binding

Inter-FPGA Floorplanning

Intra-FPGA
Floorplanning

Intra-FPGA
Floorplanning

Pipelining Pipelining

Devices
available

FPGA
board
layout

ConstraintsRTLRTLConstraints

Synthesis, Impl,
Placement &

Routing

Bitstream Bitstream

Synthesis, Impl,
Placement &

Routing

(A) (B)

Figure 3. (A) Typical FPGA compilation flow, (B) Additions
by TAPA-CS are highlighted in blue.

Accelerators for such FPGAs can be designed using com-
mercial tools like Vitis [15] and Intel HLS [12]. Figure 3 (A)
depicts the key steps involved in such toolflows. First, the
untimed C/C++ input is converted into a timed RTL using
HLS. Next, the timed RTL is passed for synthesis, placement
and routing where the logic is mapped to the physical hard-
ware. Despite enabling the increased use of FPGAs, these
tools often suffer from poor quality of results compared with
an expert-tuned RTL. This is because HLS tools cannot cor-
rectly estimate the final placement of compute modules on
the board, and insert insufficient number of clock bound-
aries (registers) between them while converting the untimed
input into a timed output. Several connections remain un-
derpipelined, degrading the final frequency. Therefore, it
is important to provide the tool a global view of the chip
layout and the placement of the compute modules during
HLS compilation.
Prior work such as Autobridge [38] integrates a coarse-

grained floorplanning step with interconnect pipelining in
HLS compilation for optimization on a single FPGA device.
TAPA [27] extends HLS to feature fast compilation and user-
friendly APIs which decouple communication and compu-
tation, allowing the user great flexibility in implementing
the inter-module communication patterns. The new version
of TAPA [37] integrates AutoBridge to improve design fre-
quency, and we use this as one of the single FPGA baseline
to evaluate TAPA-CS in Section 5.

3 Motivating Example of TAPA-CS
In this Section, we describe the importance of using TAPA-
CS through the KNN example, and aim to dispel the com-
mon misconception that scale-out acceleration is only useful
when the design cannot be routed on a single FPGA. We
find that even when designs can be successfully routed on a

968

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

single device, span-out acceleration across multiple devices
allows the design to efficiently utilize on-chip memory and
HBM.

We use the KNN algorithm presented in [46]. The topology
of the application is as illustrated in Figure 4 (A). There are
two phases in this algorithm. The first phase calculates the
distance of an input query data point with every other data-
point in the dataset (blue modules). Given that the dataset
contains N data points, each represented as a D-dimensional
feature vector, this phase has a computational and memory
access complexity of 𝑂 (𝑁 ∗ 𝐷) for a single query. Since the
KNN application is commonly used on very large datasets
with large features, the cost quickly scales up. The second
phase sorts the N distances calculated in phase 1 and returns
the top K nearest neighbors (yellow modules). Since K is
usually small and we only need to sort for the K smallest
distances, the complexity of this phase is 𝑂 (𝑁 ∗ 𝐾). Lastly,
the green module in Figure 4 accumulates the final result
and stores it back in HBM.

The design generated by traditional CAD tools results in
a low design frequency of 165MHz and high latency. There
are three main reasons for this. First, this design utilizes
a port width and buffer size of 256 bits and 32KB which
only saturates 51.2% of the HBM bandwidth. Prior work
has also found that in case of memory-bound applications
when multiple processing elements (PEs) access the HBM,
the achievable bandwidth can drop to as low as 9.4GBps
[29]. The optimal port width and buffer size which allows
us to saturate the per-bank bandwidth is 512 bits and 128KB
respectively. This configuration however, results in very high
resource utilization in the lower die, leading to a failure in the
routing phase of Vitis. Second, due to the smaller buffer, there
is a higher number of HBM accesses which are 76x slower
than on-chip memory accesses. Third, this design does not
feature any floorplanning or interconnect pipelining. Using
AutoBridge [38], the design frequency increases to 198MHz
and still incurs a high latency since the HBM bandwidth
cannot be saturated.

TAPA-CS includes all these considerations to generate an
optimized KNN implementation automatically partitioned
across two FPGAs as shown in Figure 4 (B). This provides
sufficient resources in the lower die to route the optimal port
width and buffer size configuration. Also, since the input
data is divided between the two FPGAs, the compute load
is balanced and neither FPGA is idle. The designs generated
by TAPA-CS result in a design frequency of 300MHz and are
2.0x faster than designs on a single FPGA. Therefore, it is of-
ten a misconception that a multi-FPGA design is worse than
a single FPGA design if it could be routed successfully on a
single FPGA. Using multiple FPGAs can expose higher HBM
bandwidth per compute module (aiding the performance of
memory-bound applications), and enable the successful rout-
ing of larger designs (aiding the design of compute-bound

(A) (B)

Figure 4. (A) Topology of the KNN application as found
by the graph extraction step of TAPA-CS. Here, circles are
compute modules (explained in Section 3), and hexagons
indicate HBM access. (B) Partition found by TAPA-CS is
indicated by the dashed line.

applications). In Section 5, we scale this KNN design to 2-8
FPGAs by increasing the number of PEs.

4 TAPA-CS Design
4.1 Problem Formulation
TAPA-CS takes as input a C/C++ dataflow program currently
written in the TAPA-format [27] in which each function
compiles into an RTL module and communicates with other
functions using FIFOs. We also take the network topology
and number of FPGAs present in the user cluster as input.
We model the input program as a graph 𝐺 (𝑉 , 𝐸), where

each vertex (𝑣𝑖 ∈ 𝑉) is one of the functions, and the edges
(𝑒𝑖 ∈ 𝐸) correspond to the FIFOs connecting them as shown
in Figure 5 (A). Our goal is to map each vertex 𝑣𝑖 to an FPGA
𝐹𝑖 in the cluster such that the inter-FPGA communication
cost is minimized while ensuring the compute-load between
the multiple FPGAs is balanced. We explain how we model
this cost in Section 4.3. We also apply several chip-level opti-
mizations to ensure high frequency as discussed in Section
4.5.

4.2 Key Steps
There are seven major steps in TAPA-CS:

1. Task graph construction: We model the input work-
load as a graph 𝐺 (𝑉 , 𝐸) (Figure 5(A)).

2. Task extraction and parallel synthesis: We extract
and synthesize each compute module in parallel to
obtain an accurate resource utilization profile (Figure
5 (B)).

3. Inter-FPGA floorplanning: We use the resource
utilization profile to intelligently floorplan this de-
sign across multiple FPGAs connected to each other
through any topology (daisy-chained, ring, bus, star,
mesh, hypercube, etc.) and data transfer protocol (PCIe,

969

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Compute
Module Graph

Inter-FPGA
floorplanning

T

T

T

T

T

T

T

T

T

T

Network
Topology

Task Extraction &
Parallel Synthesis

T

T

T

T

T

T

T

T

T

T

Inter-FPGA
Communication Logic

Insertion
Intra-FPGA

Floorplanning

T

T

T

T

T

Interconnect Pipelining

(A) (B) (C) (D) (E) (F)

Figure 5. Key Steps in TAPA-CS

Ethernet, etc.). This step allows us to address the key
limitation of traditional CAD toolflows (discussed in
Section 2) by providing the scheduling and binding
stage an accurate view of the topology and available
programmable resources. We assign each compute
module to an FPGA as shown in Figure 5 (C). We ex-
plain the details of this step in Section 4.3.

4. Inter-FPGA communication logic insertion: After
mapping the design to multiple devices, we add the
inter-FPGA communication logic (Figure 5(D)). We
discuss details of the communication logic in Section
4.4.

5. Intra-FPGA floorplanning: We intelligently floor-
plan the design across each FPGA chip by providing
the scheduling and binding stage information about
the locations of the hard IPs, and I/O ports, and the in-
ternal chip layout (Figure 5 (E)). Section 4.5 details how
we formalize this information and divide the FPGA
into multiple slots.

6. Interconnect Pipelining: We add pipeline registers
to the interconnect at the slot crossings to ensure high
frequency designs (Figure 5 (F)). We also ensure cor-
rectness and that the final design execution cycles are
not compromised by this interconnect pipelining step
as discussed in Section 4.6.

7. Bitstream generation: Finally, the optimized designs
and floorplanning constraints found by TAPA-CS are
passed back into the traditional CAD stack to produce
the bitstreams.

In the following Sections, we discuss each of these steps
in detail and display the features through which our tool
achieves high throughput and frequency accelerators.

4.3 Inter-FPGA Module Mapping
In this step, we provide the traditional CAD toolflows with
a view of the available FPGA devices, their topologies, and

....

....

Bus

Star

Ring Mesh 2-D Hypercube

Daisy-Chained

Figure 6. Network Topologies

the hierarchy of the user application, so that we can auto-
matically find the optimal module-to-FPGA mapping. De-
sign partitioning is enabled by the latency-insensitive na-
ture of dataflow designs. Latency-insensitive design [23, 24]
decouples the design of the interconnect from that of the
compute modules. This allows the designer to add inter-
connect pipeline registers, and connections over different
networks with arbitrarily long latency between compute
modules, without affecting the functional correctness of the
design.
In this mapping step, our goal is to minimize the high

inter-FPGA communication cost while ensuring there is no
resource congestion. If we are using two FPGAs, we consider
the total available region to be divided into two grids as
shown in Figure 5 (C).
Now, the placement task reduces to assigning each task

to one of the two grids. For this, we use an ILP-based formu-
lation to obtain exact partitioning solutions. While heuris-
tic solvers are faster, ILP allows an accurate solution. We
also show in Section 5 that both our intra- and inter- FPGA
partitioning algorithms only add between 2.8-49.7 seconds

970

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

overhead to the overall compilation flow for number of com-
pute modules ranging from 30 to 493, making the method
scalable.
Let the binary variable denoting whether vertex 𝑣𝑖 is

placed on device 𝐹𝑖 or not be 𝑣𝑑 . Let the task 𝑣𝑖 ∈ 𝑉 have a
resource utilization profile of 𝑣𝑎𝑟𝑒𝑎 . If 𝑟𝑣 is the resources used
by the set of tasks already placed in device 𝐹𝑖 , then, before
placing a new task 𝑣𝑖 in this device, we need to ensure that
there are enough resources. That is, for each type of on-chip
resource, ∑︁

𝑣∈𝑟𝑣
𝑣𝑑 × 𝑣𝑎𝑟𝑒𝑎 < 𝑇, (1)

where T is the threshold of utilization for each resource.
Next, our ILP solver ensures that the cost of inter-FPGA
communication is minimized. Therefore, we consider the
placement of all the neighbors of task 𝑣𝑖 in the cost function
as follows: ∑︁

𝑒𝑖 𝑗 ∈𝐸
𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ × 𝑑𝑖𝑠𝑡 (𝐹𝑖 , 𝐹 𝑗) × 𝜆 (2)

where 𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ is the bitwidth of the FIFO channel connect-
ing the two vertices 𝑣𝑖 and 𝑣 𝑗 , function 𝑑𝑖𝑠𝑡 (𝐹𝑖 , 𝐹 𝑗) is a metric
of the cost of communication between tasks 𝑣𝑖 and 𝑣 𝑗 placed
on the same or different FPGAs, and 𝜆 is a scaling factor
to adjust the cost for different data transfer protocols like
Ethernet and PCIe.

The communication cost function 𝑑𝑖𝑠𝑡 (𝐹𝑖 , 𝐹 𝑗) depends on
the topology of the network-connected FPGAs. Consider the
network topologies shown in Figure 6. In case the FPGAs
are daisy-chained,

𝑑𝑖𝑠𝑡 (𝐹𝑖 , 𝐹 𝑗) = |𝐹𝑖 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 − 𝐹 𝑗 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 | (3)

where 𝐹𝑖 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 and 𝐹 𝑗 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 are the device IDs
associated with the FPGAs. Similarly, in the case of a bidi-
rectional ring topology, the distance metric changes to:

𝑑𝑖𝑠𝑡 (𝐹𝑖 , 𝐹 𝑗) = min(|𝐹𝑖 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 − 𝐹 𝑗 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 |,
(𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚 − |𝐹𝑖 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 − 𝐹 𝑗 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑢𝑚 |))

where 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚 is the total number of FPGAs in the ring.
The scaling factor 𝜆 is used to adjust the cost in a system

with multiple interconnection media. We use Ethernet-based
connections offering 100GBps bandwidths as the baseline
and scale the cost for other media accordingly. For example,
if the interconnection used is PCIe Gen3x16, then the cost
is scaled by a factor of 12.5 compared with the cost of using
Ethernet-based connections.

Note that our partitioner does not always recommend the
min-cut. For the placement of each module, we consider the
resource and communication cost added by its placement on-
and off-chip. In case the module can be accommodated on
the same chip as its neighbors, we would pay a high price by
moving the compute module off-chip than placing it on-chip.
However, if the placement of this module on-chip results

in congestion (which in turn lowers design frequency), it
would be more beneficial to place the module off-chip even at
the cost of increased inter-FPGA connections. This trade-off
ensures that we can achieve high frequency designs on both
FPGAs.

4.4 Inter-FPGA Communication
Despite the excellent opportunity to leverage networking
capabilities in modern FPGAs, existing CAD tools do not
explicitly support networking. TAPA-CS supports a library
of inter-FPGA communication protocols, such as Ethernet-
based RoCEv2, and PCIe-based P2P DMA [16]. However,
for the scope of this paper, we limit our discussions and
evaluations to using the QSFP28 Ethernet ports. Here, we
use AlveoLink [3] (Figure 7) to add networking support to
the existing toolflows. AlveoLink ensures reliable, lossless,
and in-order data transfer with a low resource overhead of
∼5% on the Alveo U55C cards. RoCEv2 implements priority
flow control to ensure that low priority traffic is paused,
allowing AlveoLink traffic to continue without loss in case
of congestion. It offers a low round-trip data transfer latency
of 1 𝜇s between two FPGAs and is 12.5x faster compared
with PCIe Gen3x16 -based connections. AlveoLink’s main
components are as follows:

1. HiveNet IP: This is a Vitis-compatible implementation
of the RoCE v2 protocol which directly connects to
user kernels.

2. CMAC kernel: This is a board-specific interface be-
tween the signals detected at the QSFP28 ports and
the signals detected at the commodity network.

The user logic and AlveoLink IPs (free-running kernels
[9]) are connected through streaming connections in the
connectivity config file [8], which inserts a FIFO between
them. The FIFOs are implemented using on-chip memory
(BRAM). Free running kernels do not need to be explicitly
started, and operate on data as soon as it is available either
on the QSFP28 ports or from the user logic. Therefore, in case
of long pauses between the source and destination FPGAs,
the kernels simply stall until the required data is received.
Each port of each peer in the network is equipped with one
HiveNet and CMAC IP. At startup, the host assigns each IP
a unique ID using the card’s IP and MAC subnet. When the
user logic needs to write a packet off-chip, the payload is
appended with the destination peer’s assigned ID. Note that
the user logic can route data to multiple peers based on the
destination address specified with the payload. Based on the
topology generated in Section 4.3, TAPA-CS automatically
generates the code required to read/write the in-/out-bound
packets (along with the meta-data of the source/destination)
from/to the FIFO connecting the user logic and the AlveoLink
IP. AlveoLink supports up to 8192 lossless connections, each
of which require an independent send/receive queue pair.
We discuss limitations of AlveoLink in Sections 5 and 7.

971

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 7. AlveoLink features as described in [3]

4.5 Intra-FPGA Module Mapping
After assigning each task to the set of devices in our clus-
ter and adding the inter-FPGA communication interfaces,
the next step is to apply a similar top-down partitioning ap-
proach to each FPGA (Figure 5(E)). To formalize the device-
specific information and present it to the scheduling and
binding stage, we view each FPGA as a grid divided into
slots by the hard IPs and static regions. For example, the
Alveo U55C card shown in Figure 2 is presented to TAPA-
CS as a grid with 6 slots divided into two columns and 3
rows. Our goal is to place each vertex in one of these slots
based on the resource utilization ratios per slot and the cost
of connecting this module to all its neighbors. In this step,
our goal is to minimize the cost of inter-die communication.
Therefore, the new cost function is:

∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ × (|𝑣𝑖 .𝑟𝑜𝑤 − 𝑣 𝑗 .𝑟𝑜𝑤 | + |𝑣𝑖 .𝑐𝑜𝑙 − 𝑣 𝑗 .𝑐𝑜𝑙 |) (4)

where 𝑣𝑖 .𝑟𝑜𝑤 , 𝑣 𝑗 .𝑟𝑜𝑤 represent the rows in which tasks 𝑣𝑖
and 𝑣 𝑗 are placed respectively, and the same for the columns.
We continue such a two-way ILP-based partitioning scheme
until we divide each FPGA into eight grids.

One of the key considerations in this step is the optimal us-
age of the HBM channels. Consider the example of the U55C
cards. While the HBM offers a high aggregate bandwidth
of 460GBps, it is still 76x slower than on-chip data accesses.
Therefore, it is important to utilize the HBM channels ex-
posed to the user kernel optimally. As shown earlier in Figure
2, all the HBM channels on-board the U55C are exposed in
the bottom-most die. Suboptimal HBM channel binding can
result in large routing delays and increase congestion in this
die, leading to routing failure. Therefore, TAPA-CS supports
an automatic HBM channel binding exploration where we
find the optimal mappings based on the workload character-
istics.

4.6 Interconnect Pipelining
Following the intra-FPGA optimizations, we also conserva-
tively pipeline the interconnect at all slot-crossings to pre-
vent long delays from degrading the final clock frequency.
In contrast to prior work like [24, 43], we conservatively
pipeline all slot-crossing wires because each of our com-
pute modules compiles into an RTL controlled by a finite
state machine (FSM). Therefore, it is difficult to estimate the
latency added by the pipelining step. Next, to ensure that
the design throughput is not negatively affected by the ad-
ditional pipeline registers, we also balance the latency of
parallel paths based on cut-set pipelining [50] as shown in
[38]. In this step, the latency added by reconvergent paths
is balanced to ensure that final correctness is not impacted.
The pipeline FIFOs are indicated in red in Figure 5(F).

5 Evaluation
We implement TAPA-CS in Python and integrate it with
Vitis 2022.1. Either MIP [14] or the Gurobi solver [10] (free
for academia) can be used to solve our ILP formulations
described in Sections 4.3 and 4.5. We test TAPA-CS on a
server equipped with two nodes, each featuring four Xilinx
Alveo U55C cards connected through their QSFP28 ports in
a ring topology. The server features a 128 core AMD EPYC
7V13 CPU operating at 2.45GHz.

5.1 Benchmarks and Baselines
We evaluate TAPA-CS over multiple variations of the follow-
ing benchmarks (topology shown in Figure 8):

1. Stencil Dilate: This is a 2-D 13-point stencil kernel from
the Rodinia HLS benchmark [31, 58] which is used
in biomedical research to track leukocytes in blood
vessels. We test this kernel over 64 to 512 iterations.

2. Page Rank created by [27]: This kernel features four
PEs and one central controller with dependency cy-
cles between the compute modules. It implements the
algorithm described in [49]. We test this design over
multiple networks taken from the SNAP dataset col-
lection [45].

3. KNN created by [46]: This kernel contains 17 compute
modules implementing an optimized accelerator for
calculating each data point’s distance to its neighbor,
and sorting the distances to obtain the K-nearest neigh-
bors. We test this design across varying input sizes and
feature dimensions.

4. Systolic-array CNN accelerators created by AutoSA
[60]. This systolic array accelerator consists of multi-
ple PEs arranged in a grid format, with a total of 493
compute modules. The CNN we choose is an imple-
mentation of the third layer of the VGG model [54].
We test TAPA-CS on multiple grid dimensions ranging
from 13 x 4 to 13 x 20.

972

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

......

....

....

....

....

............

....

CNN

Page
Rank

Stencil

KNN

......

Figure 8. Topology of benchmarks. Here, circles represent
compute modules while hexagons represent HBM access.

We compare the latency and frequency of TAPA-CS with
two baselines, namely F1-V and F1-T. Here, F1-V is a sin-
gle FPGA implementation generated through Vitis HLS and
F1-T is a single FPGA implementation generated through
TAPA/AutoBridge [37]. The TAPA-CS designs are denoted
by F2 (2 FPGAs), F3 (3 FPGAs), and F4 (4 FPGAs).
Table 2 summarizes the speed-up obtained by TAPA-CS

for each benchmark averaged across all the datasets and con-
figurations tested. Note that the speed-ups are normalized
with respect to the single FPGA design generated by Vitis
HLS. We discuss more details of each application in the fol-
lowing Sections and also discuss the reasons for the varying
speed-ups.

We discuss the floorplanning and resource overheads added
by TAPA-CS in Section 5.6. Lastly, we evaluate designs span-
ning across multiple nodes and 8 FPGAs in Section 5.7.

Benchmark F1-V F1-T F2 F3 F4
Stencil 1 1.25× 1.71× 2.37× 3.06×

PageRank 1 1.54× 2.64× 4.28× 5.98×
KNN 1 1.2× 1.72× 2.53× 3.60×
CNN 1 1.1× 1.41× 2.0× 2.54×

Table 2. Speed-up of TAPA (F1-T), and TAPA-CS (F2, F3, and
F4) normalized against the Vitis HLS (F1-V) baseline.

5.2 Stencil
Stencil kernels apply a sliding window (or stencil) of compu-
tation over an input array to produce an output array. Such
kernels can either be memory-bound or compute-bound
based on the input size and the number of iterations. Prior
work [58] found that for a fixed input size, stencil designs
with a smaller number of iterations are memory-bound while

Iters Ops/Byte Volume (MB)
64 208 144.22
128 416 288.43
256 832 576.86
512 1664 1153.73

Table 3. Stencil: Compute intensity (operations / byte of
external memory access) and total inter-FPGA data transfer
over varying iterations and a fixed input size of 4096×4096.

designs with a larger number of iterations are compute-
bound. We chose the Dilate kernel from the Rodinia HLS
benchmark to test TAPA-CS. It is a 2D 13-point kernel which
we test for an input size of 4096×4096 and iterations varying
between 64 and 512.
The single FPGA baseline design can successfully route

a design with 64 iterations, 15 PEs, and an HBM access bit-
width of 128. A single device cannot support a larger number
of PEs, iterations, and bit-widths. We measure the compute
intensity (in terms of operations per byte of external memory
access) and total inter-FPGA data transfer volume of various
iteration configurations in Table 3. Note that the compute
intensity calculations assume optimal data reuse. We find
that iterations 64 and 128 are memory-boundwhile iterations
256 and 512 are compute-bound. Therefore, we scale the
design to suit the additional on-chip resources and HBM
bandwidth available in the multi-FPGA scenario as follows:

1. Design with 64 and 128 iterations: Increase HBM ac-
cess bit-width from 128 to 512 as well as the channels
used by the design from 32 (single FPGA) to 64 (2
FPGAs), 96 (3 FPGAs), and 128 (4 FPGAs).

2. Design with 256 and 512 iterations: Increase the num-
ber of PEs from 15 (single FPGA), to 30 (2 FPGAs), 60
(3 FPGAs), and 90 (4 FPGAs) keeping the HBM access
bit-width at 128.

The overall runtime of the different configurations tested on
up to 4 FPGAs is shown in Figure 9. For the design with 64
iterations, the 4 FPGA design is 4.9× faster than the single
FPGA design produced through Vitis. The main reasons for
this are the increased HBM channel usage and the higher
bit-width. However as the number of iterations increases, the
relative gains obtained by using multiple FPGAs decreases.
The 4 FPGA design with 512 iterations is only 2.3× faster
than the Vitis baseline. This is because in the case of the 4
FPGA design with 64 iterations, each FPGA has a compute-
intensity of 52 ops/byte with an inter-FPGA transfer size of
144.22MB. However, for the design with 512 iterations, each
FPGA has a compute intensity of 416 ops/byte with an inter-
FPGA transfer size of 1.1GB. Large inter-FPGA transfer sizes
lead to higher idle PE time. Also, unlike other applications
we discuss in Sections 5.3 and 5.4 (ie., PageRank and KNN),
in the case of the stencil application, each FPGA operates
sequentially due to the topology of the design. That is, FPGA

973

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

La
te

nc
y

(s
)

0.00

0.25

0.50

0.75

1.00

F1-V F1-T F2 F3 F4

Iters = 64

0.0

0.5

1.0

1.5

2.0

F1-V F1-T F2 F3 F4

Iters = 128

2.5x

0

1

2

3

4

F1-V F1-T F2 F3 F4

Iters = 256

1.8x

0
2
4
6
8

10

F1-V F1-T F2 F3 F4

Iters = 512

1.9x

3.2x 4.9x

2.1x 2.6x
3.3x

1.4x

1.9x 1.5x
2.3x

Figure 9. Stencil: Latency comparison between TAPA-CS
(F2, F3, F4), TAPA (F1-T), Vitis-HLS (F1-V).

Resource

R
es

ou
rc

e
U

sa
ge

 (%
)

0

25

50

75

100

BRAM % DSP % FF % LUT % URAM % Channels %

F1-T F4-1 F4-2 F4-3 F4-4

Figure 10. Stencil: Resource utilization of single FPGA base-
line (F1-T) and 4-FPGA design (F4). Here, F4-1 to F4-4 denote
the 4 FPGAs used in design F4.

2, 3, and 4 lie idle while their predecessor executes. However,
as the number of iterations increase and the inter-FPGA
transfer sizes rise, this becomes a limitation.
Figure 10 displays the resource utilization of the single

FPGA baseline and each of the 4 FPGAs used in design F4.
Since the resource utilization profiles per FPGA in case of
F2 and F3 are similar to that of F4, we do not report them.

The single FPGA baseline achieves a design frequency of
165 MHz using Vitis, 250MHz using TAPA, and each of the
2, 3, and 4 FPGA designs generated by TAPA-CS achieve
300MHz, displaying a 81.8% increase compared to Vitis, and
a 20% increase compared with TAPA.

5.3 Page Rank
The topology of the Page Rank application is illustrated in
Figure 8. This accelerator implements the citation ranking
algorithm described in [27, 49]. First the input graph is pre-
processed on the host and loaded onto the device HBM. Then,
the edges are streamed to each PE on-chip, which calculate
and propagate weighted rankings from source vertex to des-
tination vertex. These updates are stored back into the HBM

before they are accumulated over each vertex to calculate
the final ranking. The algorithm runs until convergence and
uses an edge-centric model such that edges are traversed to
avoid bank conflicts, and not by either source or destination
vertices.

The single FPGA baseline can successfully route a design
with 4 PEs, using 27 HBM channels to read the edges, and
store the intermediate data. We scale the design to increase
the number of PEs from 4 (single FPGA), 8 (2 FPGAs), 12
(3 FPGAs), and to 16 (4 FPGAs). Note that in the case of
the PageRank application, the inter-FPGA transfer volumes
depend on the dataset used and do not change with the num-
ber of PEs in the design. Therefore, as the compute intensity
of the application scales with the increase in PEs, the inter-
FPGA transfer size remains constant for a given dataset. This
is in contrast with the Stencil application discussed earlier
where the transfer volumes depend on the iterations and not
the input size. Also, based on the topology depicted in Figure
8, once the FPGA containing the leftmost module (FPGA 1)
routing data from the HBM to the different PEs is executed,
other FPGAs (FPGA 2-4) can be launched in parallel. These
two factors aid in the scalability of the PageRank application.

We test the design on five networks of varying number of
nodes and edges taken from the SNAP dataset [45] shown
in Table 4.
The overall runtime of the different PE configurations

tested on up to 4 FPGAs is shown in Figure 11. Consider-
ing that the data transfer volumes do not increase with the
increase in compute intensity for this application, each of
the tested configurations benefit from scaling, leading to
superlinear speed-ups. The 2, 3, and 4 FPGA designs are on
average 2.64×, 4.28×, and 5.97× faster than the single FPGA
Vitis baseline across all the tested datasets.

Network Nodes Edges
web-BerkStan 685,230 7,600,595

soc-Slashdot0811 77,360 905,468
web-Google 875,713 5,105,039
cit-Patents 3,774,768 16,518,948

web-NotreDame 325,729 1,497,134
Table 4. Networks used to test PageRank.

Figure 12 displays the resource utilization of the single
FPGA baseline and each of the 4 FPGAs used in design F4.
The resource utilization profiles per FPGA in case of F2 and
F3 are similar to that of F4, therefore, we do not report them.

The single FPGA baseline achieves a design frequency of
123MHz using Vitis, 190MHz using TAPA, and each of the 2,
3, and 4 FPGA designs generated by TAPA-CS achieve 266
MHz, displaying a 116.26% increase compared to Vitis, and
40% increase compared with TAPA.

974

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

Dataset

La
te

nc
y

(s
)

0

2

4

6

8

10

web-BerkStan soc-Slashdot0811 web-Google cit-Patents web-NotreDame

F1-V F1-T F2 F3 F4

2.62x

4.31x
6.01x

2.62x

4.22x
5.96x

2.66x

4.26x
6.02x

2.67x

4.31x
5.94x

2.63x

4.31x
5.94x

Figure 11. PageRank: Latency comparison between TAPA-
CS (F2, F3, F4), TAPA (F1-T), Vitis-HLS (F1-V).

Design

0

25

50

75

100

BRAM % DSP % FF % LUT % URAM % Channels %

F1-T F4-1 F4-2 F4-3 F4-4

Figure 12. PageRank: Resource utilization of the single FPGA
baseline (F1-T) and 4-FPGA design (F4). Here, F4-1 to F4-4
denote the 4 FPGAs used in design F4.

5.4 KNN
We use the KNN accelerator designed by [46], which demon-
strates quadratic growth in memory access and computa-
tional complexity as discussed in Section 3. The single FPGA
baseline can successfully route a design with a port width
and buffer size of 256 bits and 32KB with 27 compute mod-
ules (Figure 4). Note that the scale of the design is limited
by the HBM ports available to the blue compute modules for
reading the input data and calculating the pairwise distances.
Therefore, we scale the design such that the 2-4 FPGA cases
use 36, 54, and 72 blue modules reading from the HBM. The
rest of the modules (yellow and green) responsible for sort-
ing the distances and accumulating the final result are also
scaled accordingly. To evaluate the effectiveness of the appli-
cation partitions found by TAPA-CS, we test across varying
dataset sizes (𝑁) and dimensions (𝐷) as shown in Table 5.
The total size of the search space (𝑁 ∗ 𝐷 ∗ 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑓 𝑙𝑜𝑎𝑡))
varies from 8MB (N=1M, D=2) to 4GB (N=8M, D=128).

Note that based on the partition found in Figure 4, the size
of the inter-FPGA data transfer only depends on the value of

K, and is independent over the varying search space. There-
fore, unlike in the case of the Stencil application discussed
earlier, as the computational and memory access complexity
of the KNN application scales, the size of the data transfer
between FPGAs remains constant. Another difference is that
in the case of the KNN application, all FPGAs except the last
FPGA (responsible for aggregating the final data using the
green module), can be launched completely independently,
and do not require any data from each other.
Figure 13 presents the speed-up of the design generated

by TAPA for a single FPGA and TAPA-CS over 2-4 FPGAs
compared with the Vitis HLS baseline over varying feature
dimensions. The 2, 3, and 4 FPGA designs produced by TAPA-
CS are on average 2×, 2.7×, and 3.9× faster than the baseline
Vitis version. Next, we vary the dataset sizes and evaluate
the performance of TAPA-CS over 2-4 FPGAs in Figure 14.
Compared with the Vitis-generated single-FPGA baseline,
the 2, 3, and 4 FPGA designs are on average 1.7×, 2.8×, and
3.9× faster. Compared with the TAPA-generated single FPGA
baseline, the designs are 1.4×, 2.3×, and 3.2× faster.

Parameters Values
𝑁 : Number of data points in the dataset 1M, 2M, 3M, 4M, 8M
𝐷 : Dimension of the feature vectors 2, 4, 8, 16, 32, 64, 128

𝐾 10
Table 5. KNN parameters

Figure 15 displays the resource utilization of the single
FPGA baseline and each of the 4 FPGAs used in design F4.
The resource utilization profiles of designs F2 and F3 are
similar to that of F4 per FPGA. Therefore, we do not report
them. The single FPGA baseline achieves a design frequency
of 165MHz using Vitis, 198MHz using TAPA, and each of
the 2, 3, and 4 FPGA designs generated by TAPA-CS achieve
a design frequency of 220MHz displaying a 33% increase
compared with Vitis and 11.11% increase compared with
TAPA.

5.5 CNN
TheCNN acceleratorwe chose is a systolic-array based imple-
mentation of the third layer of the VGGmodel [54] generated
by AutoSA [60]. This accelerator consists of a configurable
grid of PEs performing identical computations.

The single FPGA baseline can successfully route a design
with a grid size of 13x4 using Vitis and 13×8 using TAPA.
Larger designs like 13×12, 13×16, and 13×20 either cause
congestion or require more resources than what is avail-
able on a single device. We display the resource utilization
profiles of these configurations in Table 7. Table 6 presents
the inter-FPGA transfer volumes for the different grid con-
figurations. In case of the CNN application, the compute
intensity depends on the input size (54.5M floating-point

975

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Feature Dimension

S
pe

ed
-U

p

0

1

2

3

4

5

D=2 D=4 D=8 D=16 D=32 D=64 D=128

F1-T F2 F3 F4

Figure 13. KNN: Speed-up of TAPA (F1-T), TAPA-CS (F2, F3,
F4) compared with Vitis HLS baseline over varying feature
size (K=10, N=4M).

Dataset Size

S
pe

ed
-U

p

0

1

2

3

4

5

N=1M N=2M N=3M N=4M N=8M

F1-T F2 F3 F4

Figure 14. KNN: Speed-up of TAPA (F1-T), TAPA-CS (F2, F3,
F4) compared with Vitis HLS baseline over varying dataset
size (K=10, D=2).

Resource

R
es

ou
rc

e
U

sa
ge

 (%
)

0

25

50

75

100

BRAM % DSP % FF % LUT % URAM % Channels %

F1-T F4-1 F4-2 F4-3 F4-4

Figure 15. KNN: Resource utilization of single FPGA base-
line (F1-T) and 4-FPGA design (F4). Here, F4-1 to F4-4 denote
the 4 FPGAs used in design F4.

Design

La
te

nc
y

(m
s)

0.0

0.2

0.4

0.6

F1-V F1-T F2 F3 F4

1.41x

2.0x
2.54x

Figure 16. CNN: Latency comparison between TAPA-CS (F2,
F3, F4), TAPA (F1-T), and Vitis-HLS (F1-V).

operations), and the inter-FPGA transfer volumes increase
with the increase in grid size.

We evaluate the single FPGA baselines (13×4 through Vi-
tis and 13×8 through TAPA) against a 2 FPGA design with
the 13×12 grid, a 3 FPGA design with the 13×16 grid, and a
4 FPGA design with the 13×20 grid in Figure 16. Compared
with the single FPGA Vitis baseline (13×4), the 2-FPGA de-
sign (13×12) is 1.41× faster, the 3-FPGA design (13×16) is
2.0× faster, and the 4-FPGA design (13×20) is 2.54× faster.
There are two main reasons limiting the speed-up of CNNs
when we scale to multiple FPGAs. First, as the grid size
increases, the inter-FPGA data transfer sizes also increase
(Table 6). Second, due to the grid-like structure of the systolic-
array, there are more PEs writing to AlveoLink requesting
inter-FPGA data transfer than in the case of the other appli-
cations shown in Figure 8. Due to the contention, there is a
higher occurance of idle PEs on the second FPGA.

Grid Size Volume (MB)
13×4 2.14
13×8 4.28
13×12 6.42
13×16 8.57
13×20 10.71

Table 6. Inter-FPGA data transfer volumes over grid sizes.

The single FPGA baselines achieve a design frequency of
300MHz for 13×4 using Vitis, and 13×8 using TAPA, but they
fail placement and routing for the larger grid sizes. TAPA-CS
can successfully route grid sizes 13×12, 13×16, and 13×20 on
2, 3, and 4 FPGAs achieving a design frequency of 300MHz
on each FPGA.

5.6 Overheads Added by TAPA-CS
TAPA-CS adds the following overheads to the overall HLS
compilation stage and the resource utilization per FPGA:

976

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

Grid LUT % FF% BRAM% DSP% URAM%
13×4 20.4 12.1 14.2 25.2 0
13×8 38.3 23.5 23.7 49 0
13×12 56.1 34.3 32.7 80.1 0
13×16 74 45.7 42.3 97.6 0
13×20 91.9 57 52.1 123.7 0

Table 7. CNN: Resource utilization of different grid sizes.

1. Floorplanning overheads: To test the scalability of
TAPA-CS, we study the floorplanning overheads added
by the tool to the HLS compilation stage for the CNN
benchmark. This is the largest application tested by
TAPA-CS with 493 compute modules and 925 FIFO
connections. The inter- and intra-FPGA floorplanning
steps add an overhead between 0.3s-24.6s and 0.1s-
12.9s respectively for the different grid sizes described
in Table 7 using the Gurobi solver.

2. Resource overheads: The networking IPs add the fol-
lowing negligible resource overhead per QSFP28 port
per board: (1) LUT: 2.04%, (2) FF: 2.94%, (3) BRAM:
2.06%, (4) DSP: 0%, and (5) URAM: 0%.

5.7 Scalability Beyond a Single Server Node
The experimental setup used to evaluate TAPA-CS consists
of two nodes with 4-FPGA rings. To scale a design beyond
a single node, we utilize host-side MPI and a 10Gbps eth-
ernet link to transfer intermediate data. Table 8 describes
the hierarchy of bandwidths involved in multi-FPGA design.
We evaluate such an 8 FPGA setup for the following two
applications:

1. Stencil: We use the design with 512 iterations and
scale the number of PEs to 120. As discussed in Table
3, each FPGA transfers a total data volume of 1.1GB
to the next FPGA. The overall runtime of the 8-FPGA
setup is 11.65s, which is 1.45× slower than the single
FPGA Vitis baseline. In this case, the main bottleneck
is the high data movement, and sequential nature of
the stencil application which leaves most of the FPGAs
idle. The intermediate data from the first set of the 4-
FPGA ring first needs to be transferred from the device
memory to the host memory. Next, the data must be
moved from one node to the other using the 10Gbps
link. Lastly, the data has to be moved from the host
memory of the second node to the device memory of
the second 4-FPGA ring.

2. PageRank: We scale the PageRank application from 4
PEs (single FPGA) to 32 PEs for the 8-FPGA design and
test it on the cit-Patents dataset described in Table 4.
Note that unlike in the case of the Stencil application
where each FPGA executes sequentially, in the case
of PageRank (Figure 8), once the vertex router mod-
ule completes execution on the first FPGA, all other

FPGAs can be launched in parallel, increasing the scal-
ability of the design. The 8-FPGA design achieves an
end-to-end latency of 3.44s, which is 1.4× faster than
the single FPGA Vitis baseline. Despite the speed-up
obtained, the 8-FPGA design is still slower than the
2-FPGA design on a single node. Therefore, the inter-
node network adds significant latency, reducing the
benefits of scaling.

Transfer Bandwidth
On-chip (SRAM) 35TBps
Off-Chip (HBM) 460GBps
Inter-FPGA 100Gbps
Inter-Node 10Gbps

Table 8. Hierarchy of data transfer bandwidths involved in
multi-FPGA design.

6 Related Works
6.1 Prior Work on Inter-FPGA Communication
Prior attempts at leveraging the networking capabilities ex-
posed by modern FPGAs can be classified into two categories.
The first category of work uses host-orchestrated data trans-
fers [40, 52, 53]. In these works the host coordinates the
inter-accelerator communication by exposing programmer-
friendly MPI-like primitives. Using host-orchestration avoids
re-programming the FPGA bitstream whenever a different
communication pattern is to be followed. However, consid-
ering that several dataflow FPGA workloads suit streaming,
where data is produced and consumed every cycle, host-
orchestration adds significant overheads. The second cat-
egory of works uses device-side initiation of inter-FPGA
communication [32, 39, 56].

We compare prior work and AlveoLink (described in Sec-
tion 4.4 in Table 9. Compared with EasyNet [39] which also
achieves a similar data transfer throughput of 90GBps, Alve-
oLink requires about half of the on-board resources.

Project Orchestration Resource (%) Performance (GBps)
TMD-MPI[53] Host 26 10
Galapagos[56] Device 11.5 10

SMI[32] Device 2 40
EasyNet[39] Device 10 90
ZRLMPI[52] Host - 10
ACCL[40] Host 16 80

AlveoLink[3] Device 5 90
Table 9. Prior work addressing Challenge 1. Here, "-" im-
plies that the area overhead is unknown. AlveoLink (used
by TAPA-CS) is indicated in bold.

977

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6.2 Prior Work on Partitioning, Mapping, & High
Design Frequency

There are some initial research efforts which address parti-
tioning and mapping across multiple FPGAs which provide
a good starting point for TAPA-CS, but they suffer from
several shortcomings. Elastic-DF [17] propose an ILP-based
partitioner similar to ours, but suffer from poor frequency
(190-240MHz) as they do not couple floorplanning and inter-
connect pipelining with HLS compilation. Also, Elastic-DF is
integrated with the DNN inference compiler FINN [21, 59],
leading to poor generalizability to different workloads.

A different approach to design partitioning leverages latency-
insensitivity [23, 24] to break the design at the latency-
insensitive endpoints [34, 61, 62]. [34] leverage this tech-
nique, but expect the user to provide a static module-to-FPGA
mapping, use Verilog/VHDL, and perform simulation-based
experiments. In case of TAPA-CS, we automatically find the
optimal module-to-FPGAmapping, expose a C++ interface to
the user, and perform experiments on real FPGAs achieving
high frequency. Virtualization-based works such as [61–63]
assign modules to pre-placed and pre-routed "soft blocks"
which does not scale well to real-world large-scale designs
where each function is compiled into an RTL controlled by a
finite state machine (FSM).

SMAPPIC [28] introduces a multi-node emulation system
where each node can be a single die of an FPGA or the whole
FPGA. It uses the computational cores shipped with BYOC
[18] assign cores to the nodes. However, SMAPPIC uses
Gen3x16 PCIe-based connections between FPGAs which
provides a slow round-trip latency of 1250ns, and does not
provide the tool with a hardware layout of the FPGAs. This
leads the designs to have a low final frequency of 100MHz. In
contrast, TAPA-CS has an inter-FPGA round trip latency of
1 𝜇s (12.5x faster than SMAPPIC), provides the partitioning
tool with a global view of the chip layout allowing us to
achieve a high frequency of between 266-300MHz. Also, in
TAPA-CS a single die can contain any number of modules,
and modules spanning across multiple dies are pipelined
sufficiently to maintain the final frequency.

7 Challenges in Multi-FPGA Design
Modern FPGAs are well-equipped to support accelerator
designs spanning across multiple devices and nodes as dis-
played in Section 5. However, compared with the efforts in
design across CPUs and GPUs, the FPGA community still
has several open challenges to address. We outline some of
them below:

1. Workload perspective: Most FPGA designers rely on
domain-specific knowledge to produce accelerators
optimized to the resources available on a single de-
vice. However, with network-connected multi-FPGA
environments, FPGA designers need to think beyond
a single FPGA and scale their designs accordingly.

CPU-based designs can be scaled easily through multi-
threading and GPU-based designs offer data-parallel
and model-parallel modes through the PyTorch front-
end which make it easier for users to design large
applications without considering the physical con-
straints of each device. TAPA-CS provides a partition-
ing framework for large scaled-up designs. However,
there is a lack of frameworks which automatically en-
able scaling-up a design from a single FPGA tomultiple
FPGAs. We are currently working on map-reduce style
programming frameworks for FPGAs which will allow
automated scaling based on the memory-/compute-
intensity of the application, combined with the parti-
tioning introduced in this paper.

2. Inter-FPGA communication perspective: As discussed
in Section 6, AlveoLink offers the best theoretical la-
tency (1𝜇s) at the lowest resource budget. However,
in practice, the latency varies greatly with different
packet sizes and total volume of data. For example, a
data transfer of 64MB with packet size of 64B takes a
total of 6.5ms, while the same volume with a packet
size of 128B takes a total of 3.9ms. This overhead can
be significant for applications with strict latency con-
straints. Ideally, FPGA-based communication should
add an overhead in the order of <100ns to be widely
adopted for different applications. We are working
with FPGA vendors to collaborate on such a solution.

8 Conclusion
This paper presents TAPA-CS - a task-parallel dataflow pro-
gramming framework which automatically partitions, gen-
erates, and compiles a large design across a cluster of FPGAs
achieving high throughput and frequency. TAPA-CS uses
an ILP-based partitioning framework which takes into ac-
count resource utilization profiles of computemodules before
mapping them to different FPGAs. It also couples a coarse-
grained floorplanning step with pipelining at the inter- and
intra-FPGA levels to ensure high accuracy. We test the de-
sign across multiple benchmarks of varying compute and
memory requirements to validate the scalability and gener-
alizability of the tool. Across all the tested designs, TAPA-CS
achieves an average throughput improvement of 2.1×, 3.2×,
and 4.4× using 2, 3, and 4 FPGAs respectively, and frequency
improvement between 11-116% compared with single FPGA
designs generated through Vitis HLS.

9 Acknowledgments
This work is partially supported by the PRISM Center under
the JUMP 2.0 Program, the NSF RTML Award CCF-1937599,
the CDSC industry partners, and AMD HACC Program. The
authors would like to thank AMD for providing the multi-
FPGA testbeds and support for AlveoLink. J. Cong has a
financial interest in AMD.

978

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Prakriya et al.

References
[1] Alibaba FPGAs in the Cloud. https://www.alibabacloud.com/help/en/

fpga-based-ecs-instance.
[2] Alveo U55C High Performance Compute Card. https://www.xilinx.

com/products/boards-and-kits/alveo/u55c.html#specifications.
[3] AlveoLink. https://github.com/Xilinx/AlveoLink.
[4] Amazon AQUA. https://aws.amazon.com/redshift/features/.
[5] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-

types/f1/.
[6] AMD/Xilinx UltraScale+ Devices Overview. https://docs.xilinx.com/r/

en-US/ug1120-alveo-platforms/Overview.
[7] Baidu FPGAs in the Cloud. https://intl.cloud.baidu.com/product/bcc.

html.
[8] Connectivity Options. https://docs.amd.com/r/en-US/ug1393-vitis-

application-acceleration/connectivity-Options.
[9] Free Running Kernels in Vitis HLS. https://docs.amd.com/r/en-US/

ug1393-vitis-application-acceleration/Free-Running-Kernels.
[10] Gurobi Solver. https://www.gurobi.com/downloads/gurobi-optimizer-

eula/.
[11] Huawei FPGAs in the Cloud.
[12] Intel HLS. https://www.intel.com/content/dam/www/central-

libraries/us/en/documents/hls-production-brief.pdf.
[13] Intel Stratix 10.
[14] Python MIP. https://www.python-mip.com/.
[15] Vitis HLS 2022.2. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.
[16] Xilinx PCIe-Based P2P. https://xilinx.github.io/XRT/master/html/p2p.

html.
[17] Tobias Alonso, Lucian Petrica, Mario Ruiz, Jakoba Petri-Koenig, Yaman

Umuroglu, Ioannis Stamelos, Elias Koromilas, Michaela Blott, and Kees
Vissers. Elastic-DF: Scaling Performance of DNN Inference in FPGA
Clouds through Automatic Partitioning. ACM Trans. Reconfigurable
Technol. Syst., 15(2), dec 2021.

[18] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory
Chirkov, Ang Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian
Zaruba, Kunal Gulati, Luca Benini, and David Wentzlaff. BYOC: A
"Bring Your Own Core" Framework for Heterogeneous-ISA Research.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, page 699–714, New York, NY, USA, 2020. Association for
Computing Machinery.

[19] Chaim Baskin, Natan Liss, Evgenii Zheltonozhskii, Alex M. Bronstein,
and Avi Mendelson. Streaming Architecture for Large-Scale Quantized
Neural Networks on an FPGA-Based Dataflow Platform. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, may 2018.

[20] Chaim Baskin, Natan Liss, Evgenii Zheltonozhskii, Alex M. Bronstein,
and Avi Mendelson. Streaming Architecture for Large-Scale Quantized
Neural Networks on an FPGA-Based Dataflow Platform. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 162–169, 2018.

[21] Michaela Blott, Thomas Preusser, Nicholas Fraser, Giulio Gambardella,
Kenneth O’Brien, and Yaman Umuroglu. FINN-R: An End-to-End
Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks, 2018.

[22] Shekhar Borkar and Andrew A. Chien. The Future of Microprocessors.
Commun. ACM, 54(5):67–77, may 2011.

[23] L.P. Carloni, K.L. McMillan, A. Saldanha, and A.L. Sangiovanni-
Vincentelli. A methodology for correct-by-construction latency insen-
sitive design. In 1999 IEEE/ACM International Conference on Computer-
Aided Design. Digest of Technical Papers (Cat. No.99CH37051), pages
309–315, 1999.

[24] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory
of latency-insensitive design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(9):1059–1076, 2001.

[25] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet
Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and
Doug Burger. A Cloud-Scale Acceleration Architecture. In Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, October 2016.

[26] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and
Jason Cong. Extending High-Level Synthesis for Task-Parallel Pro-
grams. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 204–213,
2021.

[27] Yuze Chi, LichengGuo, Jason Lau, Young kyu Choi, JieWang, and Jason
Cong. Extending High-Level Synthesis for Task-Parallel Programs,
2021.

[28] Grigory Chirkov and DavidWentzlaff. SMAPPIC: Scalable Multi-FPGA
Architecture Prototype Platform in the Cloud. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023,
page 733–746, New York, NY, USA, 2023. Association for Computing
Machinery.

[29] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and
Jason Cong. HBM Connect: High-Performance HLS Interconnect for
FPGA HBM. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’21, page 116–126, New York,
NY, USA, 2021. Association for Computing Machinery.

[30] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel Lo,
Steve Reinhardt, Shlomi Alkalay, Hari Angepat, Derek Chiou, Alessan-
dro Forin, Doug Burger, Lisa Woods, Gabriel Weisz, Michael Haselman,
and Dan Zhang. Serving DNNs in Real Time at Datacenter Scale with
Project Brainwave. IEEE Micro, 38:8–20, March 2018.

[31] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu,
and Shaochong Zhang. Understanding Performance Differences of
FPGAs and GPUs. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages
93–96, 2018.

[32] Tiziano DeMatteis, Johannes de Fine Licht, Jakub Beránek, and Torsten
Hoefler. Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware. In Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous,
and A.R. LeBlanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,
1974.

[34] Kermin Elliott Fleming, Michael Adler, Michael Pellauer, Angshu-
man Parashar, Arvind Mithal, and Joel Emer. Leveraging Latency-
Insensitivity to Ease Multiple FPGA Design. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, FPGA ’12, page 175–184, New York, NY, USA, 2012. Association
for Computing Machinery.

[35] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott Hauck. A Scal-
able High-Bandwidth Architecture for Lossless Compression on FP-
GAs. In The 23rd IEEE International Symposium on Field-Programmable
Custom Computing Machines. IEEE – Institute of Electrical and Elec-
tronics Engineers, May 2015.

[36] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Lo-
gan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek,
Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steve Reinhardt, Adrian
Caulfield, Eric Chung, and Doug Burger. A Configurable Cloud-Scale

979

https://www.alibabacloud.com/help/en/fpga-based-ecs-instance
https://www.alibabacloud.com/help/en/fpga-based-ecs-instance
https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html#specifications
https://github.com/Xilinx/AlveoLink
https://aws.amazon.com/redshift/features/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://docs.xilinx.com/r/en-US/ug1120-alveo-platforms/Overview
https://docs.xilinx.com/r/en-US/ug1120-alveo-platforms/Overview
https://intl.cloud.baidu.com/product/bcc.html
https://intl.cloud.baidu.com/product/bcc.html
https://docs.amd.com/r/en-US/ug1393-vitis-application-acceleration/connectivity-Options
https://docs.amd.com/r/en-US/ug1393-vitis-application-acceleration/connectivity-Options
https://docs.amd.com/r/en-US/ug1393-vitis-application-acceleration/Free-Running-Kernels
https://docs.amd.com/r/en-US/ug1393-vitis-application-acceleration/Free-Running-Kernels
https://www.gurobi.com/downloads/gurobi-optimizer-eula/
https://www.gurobi.com/downloads/gurobi-optimizer-eula/
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/hls-production-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/hls-production-brief.pdf
https://www.python-mip.com/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://xilinx.github.io/XRT/master/html/p2p.html
https://xilinx.github.io/XRT/master/html/p2p.html

TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

DNN Processor for Real-Time AI. In Proceedings of the 45th Interna-
tional Symposium on Computer Architecture, 2018. ACM, June 2018.

[37] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin
Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru
Zhang, and Jason Cong. TAPA: A Scalable Task-Parallel Dataflow
Programming Framework for Modern FPGAs with Co-Optimization
of HLS and Physical Design. ACM Trans. Reconfigurable Technol. Syst.,
16(4), dec 2023.

[38] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur
Ustun, Zhiru Zhang, and Jason Cong. AutoBridge: Coupling Coarse-
Grained Floorplanning and Pipelining for High-Frequency HLS Design
onMulti-Die FPGAs. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’21, page 81–92, New York,
NY, USA, 2021. Association for Computing Machinery.

[39] Zhenhao He, Dario Korolija, and Gustavo Alonso. EasyNet: 100 Gbps
Network for HLS. pages 197–203, 08 2021.

[40] Zhenhao He, Daniele Parravicini, Lucian Petrica, Kenneth O’Brien,
Gustavo Alonso, and Michaela Blott. ACCL: FPGA-Accelerated Collec-
tives over 100 Gbps TCP-IP. In 2021 IEEE/ACM International Workshop
on Heterogeneous High-performance Reconfigurable Computing (H2RC),
pages 33–43, 2021.

[41] Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng
Zhuge, Yiyu Shi, and Jingtong Hu. Achieving Super-Linear Speedup
across Multi-FPGA for Real-Time DNN Inference. ACM Trans. Embed.
Comput. Syst., 18(5s), oct 2019.

[42] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanovic. FireSim: FPGA-
Accelerated Cycle-Exact Scale-Out System Simulation in the Public
Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 29–42, 2018.

[43] E.A. Lee and D.G. Messerschmitt. Synchronous Data Flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[44] Michel Lemaire, Daniel Massicotte, and Jean Bélanger. Multi-FPGA
Communication Interface for Electric Circuit Co-Simulation. In 2020
IEEE Electric Power and Energy Conference (EPEC), pages 1–6, 2020.

[45] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[46] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Lesley Shannon.
CHIP-KNN: A Configurable and High-Performance K-Nearest Neigh-
bors Accelerator on Cloud FPGAs. In 2020 International Conference on
Field-Programmable Technology (ICFPT), pages 139–147, 2020.

[47] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H.
Loh, Mahesh Subramony, and SeanWhite. Pioneering Chiplet Technol-
ogy and Design for the AMD EPYC™ and Ryzen™ Processor Families
: Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 57–70, 2021.

[48] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,
Karin Strauss, and Eric Chung. Accelerating Deep Convolutional
Neural Networks Using Specialized Hardware, February 2015.

[49] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank Citation Ranking : Bringing Order to the Web. In The
Web Conference, 1999.

[50] Keshab K Parhi. VLSI digital signal processing systems: design and
implementation. In John Wiley & Sons, 2007.

[51] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services. IEEE Micro, 35(3):10–22, 2015.

[52] Burkhard Ringlein, Francois Abel, Alexander Ditter, Beat Weiss,
Christoph Hagleitner, and Dietmar Fey. ZRLMPI: A Unified Program-
mingModel for Reconfigurable Heterogeneous Computing Clusters. In
2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 220–220, 2020.

[53] Manuel Saldana and Paul Chow. TMD-MPI: An MPI Implementation
for Multiple Processors Across Multiple FPGAs. In 2006 International
Conference on Field Programmable Logic and Applications, pages 1–6,
2006.

[54] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition, 2015.

[55] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David
Patterson. DIABLO: AWarehouse-Scale Computer Network Simulator
Using FPGAs. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, page 207–221, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[56] Naif Tarafdar, Nariman Eskandari, Varun Sharma, Charles Lo, and
Paul Chow. Galapagos: A Full Stack Approach to FPGA Integration in
the Cloud. IEEE Micro, 38(6):18–24, 2018.

[57] Naif Tarafdar, Giuseppe Di Guglielmo, Philip C Harris, Jeffrey D Krupa,
Vladimir Loncar, Dylan S Rankin, Nhan Tran, Zhenbin Wu, Qianfeng
Shen, and Paul Chow. AIgean: An Open Framework for Machine
Learning on Heterogeneous Clusters. In 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 239–239, 2020.

[58] Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman
Fang. SASA: A Scalable andAutomatic Stencil Acceleration Framework
for Optimized Hybrid Spatial and Temporal Parallelism on HBM-Based
FPGAs. ACM Trans. Reconfigurable Technol. Syst., 16(2), apr 2023.

[59] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. FINN. In Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, feb 2017.

[60] Jie Wang, Licheng Guo, and Jason Cong. AutoSA: A Polyhedral Com-
piler for High-Performance Systolic Arrays on FPGA. In The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, FPGA ’21, page 93–104, New York, NY, USA, 2021. Association
for Computing Machinery.

[61] Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’20, page
845–858, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[62] Yue Zha and Jing Li. Hetero-ViTAL: A Virtualization Stack for Hetero-
geneous FPGA Clusters. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 470–483, 2021.

[63] Yue Zha and Jing Li. When Application-Specific ISA Meets FPGAs:
A Multi-Layer Virtualization Framework for Heterogeneous Cloud
FPGAs. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS ’21, page 123–134, New York, NY, USA, 2021. Association for
Computing Machinery.

[64] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason
Cong. Energy-Efficient CNN Implementation on a Deeply Pipelined
FPGA Cluster. In Proceedings of the 2016 International Symposium
on Low Power Electronics and Design, ISLPED ’16, page 326–331, New
York, NY, USA, 2016. Association for Computing Machinery.

[65] Wentai Zhang, Jiaxi Zhang, Minghua Shen, Guojie Luo, and Nong
Xiao. An Efficient Mapping Approach to Large-Scale DNNs on Multi-
FPGA Architectures. In 2019 Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 1241–1244, 2019.

980

http://snap.stanford.edu/data

