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I. EXTENDED ABSTRACT

Many modern CNNs feature complex architecture topolo-
gies with different layer types. One of these special layers is
a fractionally-strided or transposed convolution (T-CONV)
layer [1], which is an up-sampling layer that uses trained
weights to produce enlarged high-resolution feature maps. An
atrous or dilated convolution (D-CONV) layer is another
special layer that maintains the resolution and coverage of
feature maps by expanding the receptive fields of convolution
filters as discussed in [2]. Both T-CONV and D-CONV layers
can be naı̈vely implemented as normal convolution (N-CONV)
layers by inserting S′−1 zeros between adjacent pixels of the
input feature maps (FMs) for T-CONV or d−1 zeros between
adjacent values of the filters for D-CONV, where S′ is T-
CONV stride and d is D-CONV dilation rate. This approach,
however, leads to a huge underutilization of computation
resources due to the introduced zero MAC operations.

Previous FPGA works attempted to accelerate either T-
CONV layers like [3]–[7] or D-CONV layers like [8], but not
both. On the other hand, some ASIC works proposed versatile
accelerators for T-CONV and D-CONV layers like [9]–[12]
However, none of these works discussed the area overhead of
supporting T-CONV and D-CONV layers efficiently.

We used the decomposition approach in [12], but we provide
an optimized integration with the automated systolic array
(SA) compiler PolySA [13], and the deep learning imple-
mentation framework FlexCNN [14] for T-CONV and D-
CONV layers with arbitrary filter size, T-CONV stride (S′),
and dilation rate (d).

The decomposition of the T-CONV operation gets rid of
the non-effectual zero MAC operations by decomposing the
convolution filters into S′2 sub-filters that convolve over the
dense input feature maps producing the same outputs as the
naı̈ve implementation.

Symmetrically, the input feature maps of D-CONV are
decomposed into d2 sub-feature maps. Each sub-feature map

contains non-contiguous pixels separated by a distance d− 1
which are then convolved by the dense filters.

To implement the decomposition approach in a systolic ar-
ray, we used two open-source, Xilinx-HLS-based frameworks:
FlexCNN [14] (an end-to-end CNN accelerator), and PolySA
(an SA compiler) [13]. To the best of our knowledge, this is
the first efficient FPGA implementation of N-CONV, T-CONV,
and D-CONV in one systolic array.

For evaluation, we generated two designs: 1) FlexCNN with
the versatile SA. 2) FlexCNN with a standard SA. We also
used U-Net [15], which has irregular architecture topology
and various layer types, including T-CONV layers, to show
the effectiveness of our approach in a real-world application.

As shown in Table I, we compared the versatile SA against
a standard SA using multiple layers with various filter sizes,
T-CONV strides (S′), and dilation rates (d). We found that
layers with small Ic, Oc, orIh/w have low computation-to-
communication ratios making them communication-bound on
both SAs, which explains the low DSP efficiency for these
layers. In contrast, the last three layers are computation-
bound, and the versatile SA can achieve the ideal speedups
by removing the zero MAC operations with a DSP efficiency
of around 98%, while the DSP efficiency of the standard SA
is capped at 100

IdealSpeedup%.
When comparing U-Net performance against CPU and

GPU (NVIDIA A100-PCIE-40GB), the versatile SA achieves
speedups of 6.9× and 1.3× respectively. Moreover, U-Net
on the versatile SA achieves 3.3× speedup for the T-CONV
layers, and 1.4× for the whole network compared to a standard
SA implementation.

Finally, such a performance improvement comes at a small
area overhead compared to a standard SA with about 7%
more LUTs, 3% more Flip Flops, and 3% more DSPs. For
on-chip buffers, there is a 24% increase in BRAMs to store
the enlarged output FMs of T-CONV but a 7% decrease in
URAMs due to the removal of zeros from D-CONV filters.

TABLE I: Performance of different T-CONV and D-CONV layers.

Layer
(Ic, Oc, Ih/w)

T-CONV Results D-CONV Results

k, S′
Standard SA Versatile SA Speedup

(Ideal) k, l
Standard SA Versatile SA Speedup

(Ideal)
Latency

(ms) DSP Eff.*
Latency

(ms) DSP Eff.*
Latency

(ms) DSP Eff.*
Latency

(ms) DSP Eff.*

(256,16,16) 5,2 1.2 18.52% 0.6 37.23% 2.04× (4×) 5,2 1.1 20.86% 0.7 29.23% 1.42× (3.24×)
(16,256,16) 5,2 1.1 19.68% 0.6 34.64% 1.79× (4×) 5,2 1.0 22.04% 0.5 41.77% 1.93× (3.24×)
(16,16,256) 5,2 14.7 24.25% 5.0 69.50% 2.91× (4×) 5,2 11.8 30.03% 5.2 67.84% 2.30× (3.24×)

(256,256,256) 5,2 3653.0 24.94% 913.6 98.14% 4.00× (4×) 5,2 2958.5 30.79% 913.6 98.14% 3.24× (3.24×)
(256,256,256) 3,3 2960.7 11.08% 329.5 97.95% 8.98× (9×) 4,3 3652.3 15.96% 584.9 98.10% 6.24× (6.25×)
(256,256,256) 4,4 9352.8 6.23% 585.3 98.04% 15.98× (16×) 3,5 4419.3 7.42% 329.4 98.00% 13.42× (13.44×)

* DSP efficiency is measured as the actual performance using non-zero MAC operations divided by the peak performance (GFLOP/s) of the SA.
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